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Abstract. In this paper, some results concerning various forms of atomicity 

are given from the Quantum Measure Theory mathematical perspective and 

several physical applications are provided. Precisely, the mathematical concept 

of minimal atomicity is extended, and, based on the remark that Quantum 

Mechanics is a particular case of Fractal Mechanics for a specified scale 

resolution, the concept of fractal atomicity (and, particularly, fractal minimal 

atomicity) is introduced. Some of their mathematical properties are also given. 
 

Keywords: Atom; Pseudo-atom; Minimal atom; Fractal atom; Null-

additive set (multi)function. 

 

 
1. Introduction 

 

Measure Theory concerns with assigning a notion of size to sets. In the 

last years, non-additive measures theory was given an increasing interest due to 

its various applications in a wide range of areas. It is used to describe situations 

concerning conflicts or cooperations among intelligent rational players, giving 

an appropriate mathematical framework to predict the outcome of the process. 

Precisely, theories dealing with (pseudo)atoms and monotonicity are used in 
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statistics, game theory, probabilities, artificial intelligence. The notion of non-

atomicity for set (multi)functions plays a key role in measure theory and its 

applications and extensions. Even just replacing-additivity with finite additivity 

for measures requires some stronger non-atomicity property for the same 

conclusion to hold. 

(Non)atomic measures and purely atomic measures have been 

investigated (in different variants) due to their special form and their special 

properties, e.g. (Chiţescu, 1975, 2001; Cavaliere and Ventriglia, 2014; Gavriluţ 

and Agop, 2016; Gavriluţ and Croitoru, 2008, 2009, 2010; Gavriluţ, 2010, 

2011, 2012; Gavriluţ et al., 2015; Khare and Singh, 2008; Li et al., 2014, 2015; 

Pap, 1994, 1995, 2002; Pap et al. 2016; Rao and Rao, 1983; Suzuki, 1991; Wu 

and Bo, 2007). 

One important application of Measure Theory is in probability, where a 

measurable set is interpreted as an event and its measure as the probability that 

the event will occur. Since probability is an important notion in Quantum 

Mechanics, Measure Theory’s techniques could be used to study quantum 

phenomena. Unfortunately, one of the foundational axioms of Measure Theory 

does not remain valid in its intuitive application to Quantum Mechanics. 

Although classical measure theory imposes strict additivity conditions, 

a rich theory of non-additive measures developed. Precisely, modifications of 

traditional Measure Theory (Pap, 1994, 1995, 2002) led to Quantum Measure 

Theory (Gudder, 2009a, 2009b, 2010, 2011a, 2011b; Salgado, 2002; Sorkin, 

1994, 1997, 2007; Surya and Waldlden, 2008). Practically, an extended notion 

of a measure has been introduced and its applications to the study of 

interference, probability, and space-time histories in Quantum Mechanics have 

been discussed (Schweizer and Sklar, 1983). 

Quantum Measure Theory is a generalization of Quantum Theory where 

physical predictions are computed from a matrix known as a decoherence 

functional. Introduced by (Sorkin, 1994, 1997, 2007), quantum measures help 

us to describe Quantum Mechanics and its applications to Quantum Gravity and 

Cosmology (Hartle, 1990). Quantum Measure Theory indicates a wide variety 

of applications, its mathematical structure being used in the standard quantum 

formalism. 

Despite the continuous efforts of numerous scientists, reconciling 

General Relativity with Quantum Theory remains one of the most important 

open problems in Physics. The framework of General Relativity suggests that 

one promising approach to such unification will be by means of a reformulation 

of Quantum Theory in terms of histories rather than states. Following this idea, 

(Sorkin, 1994, 1997, 2007), has proposed a history-based framework, which can 

unify standard Quantum Mechanics as well as physical theories beyond the 

quantum formalism. 

In such framework, Schrödinger’s equation from Quantum Mechanics 

can be identified with a particular type of geodesic of the fractal space. In 
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consequence, fundamental concepts of Quantum Mechanics can be extended to 

similar concepts, but on fractal manifolds. The aim of this paper is to provide 

the mathematical-physical framework that is necessary to extend some of these 

concepts. Precisely, we extend the concept of atoms/pseudo-atoms to the 

concept of fractal minimal atom/fractal pseudo-atom, respectively. We also give 

characterizations from a mathematical viewpoint to these new concepts and we 

make explicit certain physical implications. The notion of a fractal minimal 

atom as a particular case of fractal atom is also discussed. 

 

2. Towards Quantum Measure Theory by 

 Means of Fractal Mechanics 

 

The basic idea behind Quantum Measure Theory, or Generalized 

Quantum Mechanics, for that matter, is to provide a description of the world in 

terms of histories. A history is a classical description of the system under 

consideration for a given period of time, finite or infinite. If we are trying to 

describe a system of N  particles, then a history will be given by N  classical 

trajectories. If we are working with a field theory, then a history will correspond 

to the spatial configuration of the field as a function of time. In either case, 

Quantum Measure Theory tries to provide a way to describe the world through 

classical histories by extending the notion of probability theory which is clearly 

not rich enough to model our universe. 

On the other hand, structures, self-structures etc. of the Nature can be 

assimilated to complex systems, taking into account both their functionality, as 

well as their structure (Mitchell, 2009; Nottale, 2011). The models commonly 

used to study the dynamics of complex systems are based on the assumption, 

otherwise unjustified, of the differentiability of the physical quantities that 

describe it, such as density, momentum, energy etc. (for mathematical models 

and for applications, see (Mercheş and Agop, 2015; Nottale, 2011). 

The success of differentiable models must be understood sequentially, 

i.e. on domains large enough that differentiability and integrability are valid. 

But differential method fails when facing the physical reality, with non-

differentiable or non-integral physical dynamics, such as instabilities in the case 

of dynamics of complex systems, instabilities that can generate both chaos and 

patterns. 

In order to describe such dynamics of complex systems, but still 

remaining tributary to a differential hypothesis, it is necessary to introduce, in 

an explicit manner, the scale resolution in the expressions of the physical 

variables that describe these dynamics and, implicitly, in the fundamental 

equations of “evolution” (for example, density, momentum, energy equations 

etc.). This means that any dynamic variable, dependent, in a classical meaning, 

on both spatial coordinates and time (Michel and Thomas, 2012; Mitchell, 

2009), becomes, in this new context, dependent also on the resolution scale. 
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In other words, instead of working with a dynamic variable, described 

through a strictly non-differentiable mathematical function, we will just work 

with different approximations of that function, derived through its averaging at 

different resolution scales. Consequently, any dynamic variable acts as the limit 

of a functions family, the function being non-differentiable for a null resolution 

scale and differentiable for a non-zero resolution scale. 

This approach, well adapted for applications in the field of dynamics of 

complex systems, where any real determination is conducted at a finite 

resolution scale, clearly implies the development both of a new geometric 

structure and of a physical theory (applied to dynamics of complex systems) for 

which the motion laws, invariant to spatial and temporal coordinates 

transformations, are integrated with scale laws, invariant at scale 

transformations. 

Such a theory that includes the geometric structure based on the above 

presented assumptions was developed in the Scale Relativity Theory (Nottale, 

2011) and more recently in the Scale Relativity Theory with an arbitrary 

constant fractal dimension (Mercheş and Agop, 2015). Both theories define 

the “fractal physics models” class (Mercheş and Agop, 2015; Nottale, 2011). 

Various theoretical aspects and applications of the Scale Relativity 

Theory with an arbitrary constant fractal dimension in the field of physics are 

presented in (Mercheş and Agop, 2015; Nottale, 2011). In this model, if we 

assume that the complexity of interactions in the dynamics of complex systems 

is replaced by non-differentiability, then the motions constrained on continuous, 

but differentiable curves in an Euclidean space are replaced with free motions, 

without any constrains, on continuous, but non-differentiable curves (fractal 

curves) in a fractal space. In other words, for time resolution scale that prove to 

be large when compared with the inverse of the highest Lyapunov exponent 

(Mandelbrot, 1983), the deterministic trajectories are replaced by a collection of 

potential routes, so that the concept of “definite positions” is substituted by that 

of an ensemble of positions having a definite probability density (Mandelbrot, 

1983; Mercheş and Agop, 2015; Nottale, 2011). 

In consequence, the motion curves have double identity: both geodesics 

of the fractal space and streamlines of a fractal fluid, whose entities (the 

structural units of the complex system) are substituted with the geodesics 

themselves so that any external constrains are interpreted as a selection of 

geodesics by means of measuring device. 

Since in such conjecture the Quantum Mechanics becomes a particular 

case of Fractal Mechanics, then Quantum Measure Theory could become, in our 

opinion, a particular type of a Fractal Measure Theory. 
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3. Minimal Atoms 

 

Let T  be an abstract nonvoid set, C  a ring of subsets of XT ,  a 

Banach space, )(XfP  the family of all nonvoid closed subsets of X  and 

)(: XfPC  an arbitrary set multifunction which satisfies the condition 

{0}.=)(  

By ||  , defined on C  and taking values in ][0, , we mean the set 

function defined for every CA  by {0})),((|=)(| AhA  , where h  is the 

Hausdorff-Pompeiu pseudo-metric (Gavriluţ, 2012).  

Definition 3.1 I) We say that   is: 

(i) monotone with respect to the inclusion of sets if )()( BA   , for 

every ,, CBA  with ;BA  

(ii) null-additive if ),(=)( ABA    for every ,, CBA with

0;=)(B  

(iii) null-null-additive if ,}0{=)( BA  for every ,, CBA with

.}0{=)(=)( BA   

II) We say that a set CA is: 

(i) a minimal atom of  if {0})( A  , {0})( A  and for every

,, ABB C we have either {0}=)(B  or ;= BA  

(ii) (Gavriluţ, 2010, 2011, 2012; Gavriluţ and Croitoru, 2008, 2009, 

2010) an atom of  if {0})( A  , {0})( A and for every ,, ABB C

we have either {0}=)(B  or {0};=)\( BA  

(iii) (Gavriluţ, 2010, 2011, 2012; Gavriluţ and Croitoru, 2008, 2009, 

2010) a pseudo-atom of  if {0})( A  , {0})( A and for every 

,, ABB C we have either {0}=)(B  or ).(=)( BA   

Obviously, there exist atoms which are not minimal atoms. 

We denote by  the collection of all atoms of   and by  the 

collection of all minimal atoms of .  In what follows, suppose that   is 

monotone. 

Remark 3.2 (i) Any minimal atom is also an atom (and a pseudo-atom), 

so,  

,{0})(;{=  AA CMA {0})( A and for every 

ABABB  ,,C we have {0}}=)(B
 

,{0})(;{=  AA CA {0})( A and for every ABB  ,C

we have either {0}=)(B or ;{0}}=)\( BA  
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(ii) If, moreover,   is null-additive, then any atom of   is also a 

pseudo-atom;  

(iii) If A  is a minimal atom of  , then for every ABABB  ,,C  

we have ;{0})(,{0})(  BB   

(iv) If )0,[: Cm is monotone, 0=)(m  and ),(: RPC f

)],([0,=)( AmA for every ,CA then a set CA is an atom / pseudo-atom / 

minimal atom of   if and only if the same is A  for m  in the sense of (Mesiar 

et al., 2017; Ouyang et al., 2015). 

  is called the set multifunction induced by the set function m .  

In consequence, one can have different examples concerning minimal 

atoms with respect to the set multifunction induced by a set function, taking as 

starting point the examples given in (Mesiar et al., 2017; Ouyang et al., 2015). 

Proposition 3.3 If )(: XfPC  is null-null-additive and CBA,

are two different minimal atoms of  , then .=BA  

Proof. Suppose that, on the contrary, there exist two non-disjoint, 

different minimal atoms CBA,  of  . Since ABABAA  \=)(\  and 

,BBA   then {0}=)\([ BA  or ]=\ ABA  and {0}=)([ BA  or 

].= BBA  

(i) If {0}=)({0},=)\( BABA  , since   is null-null-additive, 

we get that {0}=)(A , a contradiction. 

(ii) If ABA =\ , then  =BA , a contradiction. 

(iii) If {0}=)\( BA  and BBA = , then AB  , so {0}=)(B  (or 

AB = , which is false), so again by the null-null-additivity of  , we have 

{0}=)(A , a contradiction. 

Evidently, if CA  is a minimal atom of  , it can not exist another 

different minimal atom C1A  of   so that .1 AA   

Proposition 3.4 (i) If T is finite, then for every CA , with

{0})(,{0})(  AA  , there exists ,, ABB C which is a minimal atom 

of  . 

(ii) If, moreover, A  is an atom of   and   is null-additive, then 

)(=)( BA   and the set B  is unique.  

Proof. (i) Let us consider the collection of sets 

{0}}.)(,{0})(,,{=  MMAMM CM  Obviously,  , since 

.CA  We remark that any minimal element of M is a minimal atom of  . 

Indeed, let M  be a minimal element of M. Evidently, there can not exist 

D  so that MD  and MD  ).(  



Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 2, 2018                                             15 

 

Since M , then {0}.)(,{0})(,,  MMAMM C  

We demonstrate that M  is a minimal atom of  . Indeed, for any 

,MS  ,CS  we have either {0}=)(S  or {0}.)(,{0})(  SS   In the 

latter case, we have either MS =  or MS  , which is in contradiction with ).(  

(ii) If on the contrary there are two different minimal atoms 1B  and 2B  

of  , then {0}=)\(=)\( 21 BABA  , whence {0}=)(A , a contradiction. 

Proposition 3.5 (self-similarity of minimal atoms). Any subset ,CB  

with {0})(,{0})(  BB  of a minimal atom CA of   is a minimal atom 

of ,  too.  

Proof. Let CA  be a minimal atom of   and consider any ,CB  

with {0})(,{0})(  BB   , .AB   We prove that B  is a minimal atom of 

.  Indeed, for any BCC  ,C , then AC  , so either {0}=)(C  or 

AC = , whence .= BC  

Example 3.6 (i) Suppose that )(:, 21 RPC f are two monotone 

set multifunctions such that {0}=)(=)( 21   and )()( 21 AA   , for every

CA (for instance, one can think to ),(:, 21 RPC f

)]([0,=)()],([0,=)( 2211 AmAAmA   for every  RCC :,, 21 mmA being 

monotone, )()( 21 AmAm  , for every CA , 0)=)(=)( 21  mm . Then any 

minimal atom of 2  is a minimal atom of .1  

(ii) Let be )](),([=)(),(: 21 AmAmAf   RPC for every ,CA

where
RC:, 21 mm , 0.=)(=)( 21  mm Then a set CA is a minimal 

atom of   iff A  is a minimal atom for both 1m  and 2m  in the sense of (Mesiar 

et al., 2017; Ouyang et al., 2015).  

(iii) If ,)}({=)(),(: AmAf  RPC  for every ,CA  where

RC:m , 0=)(m , then a set CA is a minimal atom of   iff A  is a 

minimal atom for m  in the sense of (Mesiar et al., 2017; Ouyang et al., 2015).  

In this way, one sees that Definition 3.1 - (i) generalizes to the set 

valued case the corresponding notion introduced by (Mesiar et al., 2017; 

Ouyang et al., 2015).  

Definition 3.7 (i) If )(: XfPC , let be the variation of ,

]0,[)(: TP , which is defined for every )(TA P  by: 
 

.,=,1,=,,=|;)(|sup=)(
1=

1= 







 jiAApiAAAAA jiii
i

p

i

p

i

  
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(ii) We say that   is of finite variation if .<)( T  

Remark 3.8 For every CA , we have .|)(|)( AA    Consequently, 

if CA  is a minimal atom of   in the sense of (Mesiar et al., 2017; Ouyang 

et al., 2015), then A  is a minimal atom of  .  

Conversely, if CA is a minimal atom of  , then it is also an atom of 

 , so |)(|)( AA   , whence A  is a minimal atom of .  

Remark 3.9 (i) Any set CA that can be written as i
i

p

A
1=
  (where for 

every ,1,= pi CiA are different minimal atoms of ) , is partitioned in this 

way, since by Proposition 3.3 we have ,=  ji AA .ji   

Since any minimal atom is an atom, then in this case |,)(=|)( ii AA   

for every .1,= pi  Consequently, if, moreover,   is a multisubmeasure of finite 

variation in the sense of (Gavriluţ, 2009), then by (Gavriluţ, 2009),   is finitely 

additive, so =)(A .|)(|
1=

i

i

p

A  

(ii) (non-decomposability of minimal atoms) Any minimal atom CA

can not be partitioned (its only partition is }).,{ A  

The converse of the last statement also holds: 

Proposition 3.10 Any non-partitionable atom CA  is a minimal 

atom.  

Proof. Since A  is an atom, then {0})(,{0})(  AA  . On the 

other hand, because A  is non-partitionable, there can not exist two nonvoid 

disjoint subsets of ,A  let us say ., 21 CAA  

Let be now arbitrary ,CB  with .AB   One has either {0}=)(B  or 

{0})(,{0})(  BB  . In the latter situation, we can have only AB =  (if 

not, },\{ BBA  is a partition of A , which is a contradiction). 

Corollary 3.11 An atom is minimal if and only if it is not partitionable.  

Theorem 3.12 If T  is finite,   is null-additive and 
piiA

1,=
}{  is the set 

of all minimal different atoms contained in a set CA , with

{0})(,{0})(  AA  , then )(=)(
1=

i
i

p

AA   (so, the minimal atoms are the 

only ones which are important from the “measurement” point of view).  
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Proof. {0}=)\(
1=

i
i

p

AA   (if not, there exists another minimal atom of 

).  By the null-additivity of ,  one gets )(=)(
1=

i
i

p

AA  . 

 

4. From the Standard Mathematical Atom to the Fractal  

Atom by Means of a Physical Procedure 

 

Let T  be an abstract nonvoid set, C a lattice of subsets of T  and 

RC:m  an arbitrary set function with 0.=)(m  One can immediately 

generalize the notions of a pseudo-atom / minimal atom, respectively, to the 

case when C  is only a lattice and not necessarily a ring. 

Example 4.1 (i) It T  is a nonempty metric space, then the Hausdorff 

dimension RP )(:dim THaus  (Mandelbrot, 1983) is a monotone real 

function. Evidently, 0.=)(dim Haus  

(ii) For every 0,d  the Hausdorff measure RP )(: TH d
 is an 

outer measure, so, particularly, it is a submeasure. 

Remark 4.2 (i) The union of two sets A and B having the fractal 

dimensions ,AD  respectively, BD  has the fractal dimension =BAD 

};,{max BA DD  

(ii) The intersection of two sets A  and B  having the fractal dimensions 

AD , respectively, BD  has the fractal dimension dDDD BABA  = , where 

d  is the embedding Euclidean dimension (Iannaccone and Khokha, 1995). 

The following definition is then consistent: 

Definition 4.3 A pseudo-atom / minimal atom, respectively, CA  of 

m  having the fractal dimension AD  is said to be a fractal pseudo-atom / fractal 

minimal atom, respectively. 

One can easily verify the following: 

Proposition 4.4 If CBA,  are fractal pseudo-atoms of m  and if

0>)( BAm  , then BA  is a fractal pseudo-atom of m  and =)( BAm 

).(=)( BmAm  
 

5. Concluding Remarks 

 

The main conclusions of the present paper are the following: 

i) Minimal atomicity in correspondence with Quantum Measure Theory 

is discussed and some physical applications are provided; 
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ii) The concept of atomicity (and, particularly, of minimal atomicity) is 

extended in the form of fractal atomicity, respectively, fractal minimal 

atomicity. Some mathematical properties of fractal minimal atomicity are given. 
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VARIANTE ALE ATOMICITĂŢII ŞI UNELE APLICAŢII FIZICE 

 

(Rezumat) 

 

În această lucrare, prezentăm unele rezultate referitoare la diferite forme de 

atomicitate din perspectiva teoriei măsurii cuantice şi stabilim câteva aplicaţii în fizică. 

Mai precis, extindem conceptul matematic de atomicitate minimală şi, pe baza remarcii 

conform căreia mecanica cuantică este un caz particular de mecanică fractală la o 

rezoluţie de scală specifică, introducem conceptul de atomicitate fractală (şi, în 

particular, cel de atomicitate minimală fractală). De asemenea, indicăm unele proprietăţi 

matematice ale acestora. 



BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI 
Publicat de 

Universitatea Tehnică „Gheorghe Asachi” din Iaşi 
Volumul 64 (68), Numărul 2, 2018 

Secţia 
MATEMATICĂ. MECANICĂ TEORETICĂ. FIZICĂ 

 
 
 
 
 
 

SAGITTARIUS A*: A COMPELLING CASE AGAINST 
 THE EXISTENCE OF A SUPERMASSIVE BLACK HOLE IN 

THE CENTER OF MILKY WAY 
 

BY 
 

NICOLAE MAZILU1,2,3,∗ 
 

1Imperial College London, United Kingdom, 
Department of Physics 

2Silver Lake, Ohio, USA 
3Institute for Nuclear Research, Piteşti, Romania 

 
 

Received: April 10, 2018 
Accepted for publication: May 18, 2018 

           
Abstract. The astrophysics literature tries to make a case for the existence 

of a supermassive black hole at the center of Milky Way, in the location of the 
radio source Sagittarius A*. We think that, with arguments of the very same 
nature, the evidence points quite to the contrary. Thus, while the observational 
data on the orbits of the starry objects around Sagittarius A*, being of a 
projective character, are entirely reliable, their physical explanation uses quite a 
particular type of Newtonian forces, namely those with magnitude depending 
exclusively on the distance between bodies. To begin with, this limitation 
assumes a priori that the bodies connected by such forces are special material 
points, viz. space positions endowed with mass. At space scales such as that of 
the galactic center region in discussion, this assumption is not realistic, and 
therefore, implicitly, such particular forces are themselves not quite realistic. 
Still using Newtonian forces in argument, one should allow, on such an occasion, 
their full generality. This means that we only need to assume that they are central 
forces with no other further constraints. Within the framework of the Newtonian 
theory of forces this freedom has important theoretical consequences discussed 
in the present work. Among these the chief one, from astrophysical point of 
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view, is that the presence of a supermassive black hole in the center of Milky 
Way might not be a sustainable assumption. An alternative is presented. 

 

Keywords: Sagittarius A*; Milky Way; central forces; Newtonian theory 
of forces; electromagnetic field; production of field; astrophysics; fundamental 
physics. 

 
1. Introduction 

 
We note that a previous version of this work was uploaded to the online 

free access database viXra.org (Mazilu, 2012). 
The story starts with the discovery of the galactic radiosource called 

Sagittarius A* in the center of the Milky Way (Balick and Brown, 1974). The 
scientific consensus is that, physically, such a source should be correlated with 
the existence of a material body in that place. For, the fundamental physical 
notion is that the electromagnetic field is only created by the motion of matter. 
However, such a body is optically invisible at that position. And as, according 
to fundamental physical understanding, one cannot presume that the center of a 
spiral galaxy is simply an empty location emitting electromagnetic radiation, the 
astronomers got quite a mystery in their hands. 
 Then, later on, the adaptative optics stepped down from the military to 
scientific uses, and starting from about the beginning of the last decade of the 
previous century, it allowed to astrophysicists distinguishing starry isolated 
objects moving against the background of the center of the Milky Way. It was 
thus possible to notice coherent patterns in the motion paths of such stars, as 
projected on the canopy (for an outstanding review of the history, evidence and 
elimination of the many alternative physical explanations see (Reid, 2009) and 
the original literature cited there). One such object, called S02, even completed 
an elliptic path, under our eyes so to speak, in about 16 years, proving beyond 
any doubt that its motion is Keplerian. Further analysis revealed many such 
gravitating stars, whose paths are only partially accessible though. Nevertheless 
their observed positions are enough for allowing astrophysicists to infer that 
their complete orbits are ellipses. 
 The common feature of all these orbits is that they all contain the 
radiosource Sagittarius A* in one of their foci, therefore they should be 
Keplerian orbits, or at least very close to these. And as this source is dim in any 
kind of perturbations that can reach the Earth, one can easily suspect that not all 
radiation comes out from the source. First, the object is invisible. Therefore the 
optical part of the spectrum does not reach the Earth, and this can have a 
rational explanation: it is swallowed by the matter existing between the center 
of the Milky Way and the solar system. This seems only reasonable, inasmuch 
as the matter between the center of galaxy and the solar system dims the light 
by some 30 orders of magnitude. In other regions of spectrum we are luckier: 
infrared and radio waves are dimmed only by about three orders of magnitude. 
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However, there is still a big discrepancy between the mass to be assigned to the 
body assumed to create the gravitational field responsible for the motions of 
those stars and the amount of radiation we are supposed to receive from such a 
body. This fact helped gradually built the conclusion that the central body 
works in the way in which a black hole is supposed to work. For, if one applies 
the Newtonian theory of forces in a classical way (see for instance (Gillessen, 
2009)), the mass of an object that fits the requirement of being the source of 
such a gravitational field is about four million and a half solar masses: a 
supermassive black hole! 
 Recently, a new finding, seems to support the idea of a massive black 
hole in the center of Milky Way: 

“Recently, we discovered a peculiar molecular cloud, CO–0.40–0.22, 
with an extremely broad velocity width, near the centre of our Milky Way 
galaxy. Based on the careful analysis of gas kinematics, we concluded that a 
compact object with a mass of about 105M⊙ is lurking in this cloud. Here we 
report the detection of a point-like continuum source as well as a compact gas 
clump near the centre of CO–0.40–0.22. This point-like continuum source (CO–
0.40–0.22*) has a wide-band spectrum consistent with 1/500 of the Galactic 
SMBH (Sgr A*) in luminosity. Numerical simulations around a point-like 
massive object reproduce the kinematics of dense molecular gas well, which 
suggests that CO–0.40–0.22* is one of the most promising candidates for an 
intermediate-mass black hole” (Oka et al., 2017). 

As seen in the paragraph above, this new data was interpreted using 
numerical simulations based on the same classical assumptions as the ones 
before it (Reid, 2009). 

 It is our opinion that the very theory of forces used to disentangle such a 
case is not completely adequate to the task, so the conclusion of the existence of 
a black hole in the center of Milky Way, or in the center of any other galaxy for 
that matter, might not be the appropriate one. In fact the observational data may 
be pointing out to the necessity of approaching the physics of the center of 
Milky Way with the ingenuity with which Newton himself approached its 
prototype, the Keplerian synthesis of planets’ motion. Thus, while we agree 
entirely with the statement that the Milky Way’s center is “a laboratory for 
fundamental astrophysics and galactic nuclei” (Ghez et al., 2005), we think a 
little further, namely of ‘a laboratory for fundamental physics’ at large. For, the 
data itself may compel us to change the ideas about the fundamental forces as 
we claim to know them today, by looking deeper into their history and 
considering it face value. 

 Indeed, we are, here and now, in that unique situation in which the 
science was only once in its history. That was in the times when Newton, 
having at his disposal the Keplerian synthesis of Tycho Brahe’s data on Mars, 
has invented the forces of which the physicists and astronomers speak today. 
Thus, on one hand, we have at our disposal the outstanding synthesis, allowed 
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by the adaptative optics, of the motions of the stars in the very central part of 
our galaxy (see (Ghez et al., 2005; Eckart et al., 2002) and the earlier original 
works cited there). Like the old Kepler synthesis, the new synthesis points out 
to coherent motions, of stars this time, which projected on the canopy appear as 
elliptical motions. Therefore, in reality they cannot be but Keplerian motions, 
no matter of the orientation of their planes in space. Being based on projections 
on the canopy, the conclusion is by no means affected by the uncertainty in the 
galactic metric parameters (for a recent critical study of such uncertainties see 
for instance (McMillan and Binney, 2010)). It is therefore the most reliable 
conclusion one can draw based on observations. Now, when the orientation of 
those planes of motion is taken into consideration in extracting the orbits from 
the data, all these orbits reveal that Sagittarius A* is in one of their foci, just 
like the Sun in the Kepler’s case. But unlike the planets of the solar system, the 
stars orbiting around Sagittarius A* are not in the same plane. All we can say is 
that as conic sections they belong to a family of quadrics having a common 
focus. This fact may, by itself, indicate that the case of the black hole is 
unsustainable. 

 For, on the other hand, the usual physical explanation of this 
observational synthesis stops at some quite particular class of forces that might 
not be appropriate to the task. These forces are assumed to be well known, 
being of the type which Newton used in order to explain the ideal Kepler 
motions, amended, on occasions, to account for the almost insignificant 
rotations of the orbits. In fact, with rare exceptions, the whole speculative 
physics today uses only such forces, distinguished by the fact that they are 
conservative and have the magnitude depending exclusively on the distance 
between the attracted and the attracting bodies. Provided, of course, these 
bodies can be considered material points in the classical sense, i.e. space 
positions endowed with physical properties (mass, charge etc.). 

 So, regarding the main physical argument used in explaining the 
observational data – the forces – we think that it calls for a more careful 
consideration. Specifically, we should go way deeper with the assumptions 
about the forces responsible for the contemporary Kepler motions in the center 
of Milky Way, at least as deep as Newton went in the prototypical case of the 
original Kepler motion. It appears therefore as only appropriate to start our 
present undertaking with the essentials of Newton’s approach of his invention 
of central forces (see (Newton, 1995) Book I, Sections II & III). 
 

2. The Newtonian Forces 
 

In order to make our message more clear, let us rephrase the Corollary 3 
of the Proposition VII from Principia, with reference to an arbitrary orbit, not 
just a Keplerian one. This confers maximum generality to the concept of 
Newtonian force and to its quantitative definition, pointing out the particular 
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situation of the mass itself in the construction of force. This corollary is, in our 
opinion, the key of understanding the action of all forces in the universe. In a 
simplified expression, extracted from Newton’s original (Newton, 1995, p. 48), 
and adapted for our specific needs, it sounds like: 

The force by which a body P … revolves about a center of force S, is to 
the force by which the same body may revolve in the same orbit, and the same 
periodic time, about another center of force R, as the volume SP×RP2, … to the 
cube of the straight segment SG, drawn from the first center of force S, parallel 
to the distance RP of the body from the second center of force R, and meeting 
the tangent PG of the orbit in G. One can easily draw a figure in order to better 
assess the geometrical situation. The points S and R can occupy any positions 
with respect to the observed orbit in its plane. 

To our knowledge, J.W.L. Glaisher appears to be the first one who 
properly put this statement into an analytical form, with no recourse whatsoever 
to dynamical principles, and with reference to the eliptic, therefore closer to 
Keplerian, form of the orbit (Glaisher, 1878). The theory goes, by and large, 
along the following lines. Assume that, in the Cartesian coordinates of the plane 
of motion, the equation of the observed orbit is the quadratic non-homogeneous 
equation 

2 2
11 12 22 13 23 33( , ) 2 2 2 0f x y a x a xy a y a x a y a≡ + + + + + =        (1) 

 
Then the relation between the two forces expressed in the statement 

above can be translated into equation: 
 

3

2 2
FORCE toward (1 ) (FORCE toward )

2
rS R

r r
ξ ε

ε ε
= + ⋅ ⋅

+ − ⋅







   
(2) 

 

Here ξ


 the vector of components 
 

11 12 13 12 22 23

13 23 33 13 23 33

,a x a y a a x a y a
a x a y a a x a y a

+ + + +
+ + + +

        (3) 

 

and SRξ ≡




. r


 denotes here the position vector of the moving point P with 
respect to S, and r is its magnitude – i.e. what we call here the distance, when 
not otherwise specified. 

Eq. (2) shows how to calculate analytically the force in P toward point S, 
when we happen to know the force in P toward the point R from the plane of 
motion. This is the basic mathematical principle of the Newtonian natural 
philosophy. It is not hard to see that it extends… naturally the observations 
related to the ‘working principle’ of a sling shooting, whereby the force of gravity 
– i.e. the weight – acting vertically, is actually ‘compared’, by means of the sling 
itself, with the centrifugal force, acting horizontally or in any other direction. 
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 Now, the force toward R can be taken as reference in measuring the 
force in the current point P of the orbit in any other direction. So, in this case, 
we are sort of compelled, so to speak, to a choice of R that makes the theory of 
forces universal, at least in the Keplerian situations. This leads within modern 
theoretical physical views, to a calibration of Newtonian forces. In the cases 
where R occupies the position of the center of the orbit, Newton has inductively 
shown that the force toward it, is directly proportional with the distance 
between R and P, i.e. with the distance from the center to the orbiting point. If 
we use this result in Eq. (2), then the force we need to know is 

 
3FORCE toward (1 )S rµ ξ ε= ⋅ ⋅ + ⋅



             (4) 
 
where µ  is a constant of proportionality, coming from the force toward the 

center of orbit. If, further on, we use the components (3) of the vector ξ


, we get: 
 

2
33 3

13 23 33

FORCE toward 
( )

rS a
a x a y a

µ= ⋅ ⋅
+ +                  

(5) 

 
in the reference frame where S is in origin. This result can be, of course, 
expressed in different manners, depending on the way of writing the equation of 
the conic representing the orbit. However, it carries an even more important 
message, at least from a geometrical point of view. 

 With the substantial help of the analytical geometry of conics, in words 
the result sounds: the force toward a certain center by means of which a certain 
material point describes a conical orbit around that center, is directly 
proportional to the distance from the point to the center of force and inversely 
proportional with the third power of the distance from the point to the straight 
line conjugated to the center of force with respect to the orbit. This is a theorem 
first given by W.R. Hamilton (Hamilton, 1847) on the “occasion of a study of 
Principia.” Therefore, once again, the center of force can occupy any position 
with respect to the orbit, but in the case of conical orbits, and with a standard 
choice of the reference force, i.e. in a standard calibration or gauging of the 
forces, the definition of Newtonian force involves the very same elements as the 
definition of the orbit itself: the distances of the generic point of orbit from the 
center of force and from the polar line coresponding to that center of force. 

 This fact should be more obvious if we write the equation of force in 
the form: 

3 2
1 1 1 2 2 2

( , )
[( )( )]

rf x y
a x b y c a x b y c

µ
=

+ + + +
  (6) 

 
Here the equation of the orbit is understood in the form 
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2
1 1 1 2 2 2 13 23 33( )( ) ( ) 0a x b y c a x b y c a x a y a+ + + + − + + =  (7) 

 
It expresses the fact that, geometrically, the orbit is determined by its 

tangent lines – real or imaginary – in the two points where the straight line polar 
to the center of force with respect to the orbit cuts it. The tangents are 
considered as having the equations: 

 

1 1 1 2 2 20; 0a x b y c a x b y c+ + = + + =            (8) 
 
while the polar itself of the center of force with respect to the orbit is taken as 
given by equation 
 

13 23 33 0a x a y a+ + =             (9) 
 
Now, based on this general presentation, let’s see where the limitation 

to the dependence of the magnitude of force exclusively on the distance enters 
the physics of gravitating systems. For, one can see from Eq. (6) that, in 
general, such a behavior of the magnitude of force is far from being the general 
case. Rather, the magnitude of the Newtonian force as we read it even in conical 
orbits, with no further specification of the position of the actual center of force, 
depends also on the current direction of the orbiting body. 

 The very idea of force in explaining celestial harmony started from the 
first of the Kepler laws: the planets describe elliptical orbits with the Sun in one 
of their foci. This last information is crucial. For, if the position of the center of 
force is in a focus of the ellipse, then the magnitude of force cannot depend but 
on the distance, and that even in a very special way. Indeed, we can then use the 
equation of the orbit referred explicitly to one of its foci. By the definition of a 
conic section, the ratio between the distances from the planet to one of the foci 
and from the planet to the corresponding directrix (the polar of focus) is 
constant: the eccentricity. This comes down analytically to the equation 

 
2 2 2

13 23 33( )r e a x a y a= ⋅ + +             (10) 
 
where e is a number proportional to the eccentricity of the orbit. In this case, 
using the Eq. (7), Eq. (6) leads directly to: 
 

2( , )f x y
r
µ

=       (11) 

 
with µ  – a constant. This is the force of ‘universal gravitation’ to which the 
classical physics makes always reference, with no mention though of the 
prerequisites of its expression: that the point of attraction and the point attracted 
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have to be only… points, and furthermore, the point of attraction has to occupy 
a privileged position with respect to orbit – that of one of its foci. For, if the 
point of attraction occupies any other position in the plane of motion, with rare 
exceptions, we may be in the situation that the magnitude of force depends also 
on the direction from the center of force to the moving body. Thus the 
universally used Newtonian force of gravity is actually quite a particular choice 
among the possible forces responsible for the Kepler synthesis. 

 Let’s therefore see what other cases may occur of dependence of the 
magnitude of Newtonian forces only on distance. Indeed, the motion of planets 
is not the only one given to our experience, although we have to recognize that 
it is the one that stirred up everything. Thus, for instance, the immediate 
experience has certainly to do with with elastic forces too. These are the forces 
that ‘gauge’ – and that in a quite precise manner we should say (see (Mazilu and 
Agop, 2012)) – all the modern positive science, insofar as it needs to be 
submitted to experimental verification. And such forces are obtained, within the 
Newtonian program sketched above, in cases where the center of force 
coincides with the center of the orbit. In Eq. (7) this means 13 23 0a a= = , and 
therefore Eq. (6) becomes: 

 

( , )f x y rµ= ⋅     (12) 
 
where µ  is another constant, not necessarily that from Eq. (11). This might 
seem as a tautology – we started specifically from the idea that the force toward 
the center of the orbit is an elastic one – but, at a closer scrutiny we might have 
to change this opinion. First of all, Eq. (12) shows that the theory is not self-
contradicting, and this is an important fact by itself. Secondly, this shows that 
the Newtonian formula works for the same point in the plane of orbit in two 
different instances – as material point and empty position – and this is most 
important conclusion for theoretical physics. 

 
3. The Concept of Field and the Modern Idea of Gauging 

 
Indeed, this is the very essence of the idea of field in physics. For a 

better understanding, consider the situation of light. What we usually accept is 
that the Newtonian force is proportional to distance in the cases where the 
center of force is material and located in the center of the orbit. What about the 
cases when that center of force is simply an empty position? This is plainly the 
case of the Fresnel ellipse in the plane waves of light, perpendicular to the light 
ray: there is no material center of force on the light ray, and yet the light can be 
described as if there is one there. This fact reveals the real merit of the 
Newton’s definition of the force: it can be calculated with respect to any point, 
once the geometric setup is Keplerian! The force has indeed the characteristics 
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of a true field, as these came down to us from the theoretical physics of the 19th 
century. This would mean, for instance, that in the case of a light ray there is 
always a Newtonian central force acting along the ray, toward or away from the 
source of light. The idea was always rejected from the realm of physics, based 
exclusively on the fact that the force should be a vector, for which the formulas 
like (11) and (12) give the magnitude unconditionally. As Glaisher’s analysis 
clearly shows, this was not at all the case when Newton has invented the forces. 

 Regarding the light phenomenon per se, this philosophy was 
materialized even from the times of Fresnel, by the ‘gauging’ proposal of James 
Mac Cullagh (Mac Cullagh, 1831) for the representation of the light according 
to Newtonian view of forces. Let us briefly see what Mac Cullagh’s point of 
view is about. He was concerned with the elliptically polarized light, like the 
light passing through rock crystals. He found that this light can be represented 
by two harmonic vector processes in the same plane, like the processes invented 
by Fresnel to help explaining the light phenomenon, making a certain angle 
between them. Later on (Mac Cullagh, 1836) he noticed that the theory can be 
put in a space-time form by a system of coupled differential equations, which 
led him to the foundations of a theory of ether (Mac Cullagh, 1839) – improved 
afterwards by Lord Kelvin and Joseph Larmor – and finally to an exquisite 
explanation of the phenomenon of double refraction in quartz (Mac Cullagh, 
1840). It is to be noticed that the veiled persuading argument of Mac Cullagh’s 
feat seems to have been the faulty notion of describing the light by a 
displacement, advanced initially by Fresnel. Indeed, in the case of light – a 
continuum phenomenon – the mechanical displacement has no object, i.e. it is 
not referring to a material point, but simply to an empty position in space, for no 
matter as we know it is located there. This very fact made Newton’s natural 
philosophy hardly relevant to the light, a detail corrected, as we see, in a 
brilliant way by Mac Cullagh. These observations explain, by and large, the 
almost explicit contribution of Mac Cullagh to the future electromagnetic theory 
of light (Darrigol, 2002; Darrigol, 2010). In hindsight though, Mac Cullagh’s 
seems to us to be much more than an electromagnetic theory. It should be taken, 
indeed, as the very first specimen of a gauge theory (see 10 for a discussion of 
light in ‘Mac Cullagh’s gauge’) of the kind that came into existence more than a 
century afterwards, in the form of the Yang-Mills theory (Yang and Mills, 1954). 

 Returning, for one last consideration, back to the Eqs. (11) and (12), 
they reveal forces whose magnitude is exclusively dependent only on the 
distance between the points assumed to be physically correlated by them. These 
happen also to be the only forces that satisfy the Kepler geometry per se, i.e. the 
only ones having closed orbits (Bertrand, 1873). But one can see from these 
examples that the dependence of the magnitude of force exclusively on distance 
is acquired, first of all, by the special position of the center of force with respect 
to the orbit. Secondly, and by no means less important, is the fact that the 
universal ‘comparison force’ as it were, the gauging force of the Newtonian 
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procedure, is the elastic force, which may or may not be actual after all, when 
referred to criteria dictated by our senses, depending on the circumstance that 
the center of orbit contains matter or not. And any other comparison force than 
the elastic isotropic one, used in the Newtonian procedure of defining forces, 
would make the formula (6) more complicated, perhaps even prohibitively. This 
moment in the definition of force in the Newtonian philosophy turns out to have 
universal significance even through the modern idea of ‘gauging’ from 
theoretical physics. From this perspective it shows even more: nothing can be 
reproducibly described in physics, unless we have a gauge for it. 

 Nevertheless, it turns out that the Eqs. (11) and (12) are used nowadays 
in theoretical physics with no reference to their Newtonian foundation, and 
therefore with no further qualifications about their very possibility at that. For 
instance there are times, and very often at that, when the force from Eq. (11) is 
considered a static force. This should entail special considerations, because 
originally the very existence of such force carries a precise identity: it is clearly 
related to a Keplerian motion, and moreover, the value (11) is referred to a 
gauging elastic isotropic force that might not even be actual. In hindsight 
though, judging by the success of such universal ‘anonymous’ forces in the 
history of physics, specifically in the theory of light and astrophysics, there 
seem to be no need at all for the existence of matter in the center of the conic, in 
order to ratify their reality. If one needs a ratification anyway, this comes 
simply from the fact that the elastic forces are an expression of the existence of 
a privileged coordinate system – that of harmonic coordinates (Mazilu and 
Agop, 2012). 

 In the case of those two time-honored central forces with magnitude 
depending exclusively on distance, we have as centers of force the very center 
of the orbit and its focus. But these are by no means singular cases leading to a 
force with magnitude depending exclusively on distance. If, for instance, the 
motion is elliptic and the center of force is located on the orbit itself, the 
magnitude of the force accounting for this motion is inversely proportional with 
the fifth power of the distance. By the same token, if the orbit is of a special 
shape – other than a conic section – we may also have forces exclusively 
depending on distance. This is, for example, the case when the motion has the 
space form of a logarithmic spiral, like the arms of a galaxy. The force accounting 
for such a motion pulls toward the pole of the spiral with a magnitude inversely 
proportional with the third power of the distance from that center. 

 The case presented by Sagittarius A* is outstanding mostly from a 
special point of view of natural philosophy, that may induce us to reconsider the 
previous old natural philosophy founded by Newton. As we have already 
mentioned above, the only criterion that validates the decision that a body is 
acted upon by a force pulling towards a certain point in space is the perceived 
matter in that point. This can be actually quoted as the first gauging criterion of 
physics. It turns out to work even today in full swing. According to this 
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criterion, Sagittarius A* should be such a point, even though only ‘partially 
perceived’ as it were. However, it does not satisfy itself to another criterion that 
historically became essential, but actually it turned out to be quite arbitrary: that 
of mass. In order to define this criterion, and to recognize its true meaning, let’s 
follow the evolution of Newtonian ideas along the theory of continuum 
material, leading to Poisson’s equation. This is actually the route which led to 
the modern theoretical physics’ idea of gauging in the first place. 

 
4. The Mass and the Newtonian Theory of Forces 

 
Perhaps we would have never talked about the whole theoretical physics 

as it is today, if Newton would not have insisted on the idea that the force of 
gravity should be directly proportional with the ‘quantities of matter’ of the 
bodies involved in the interaction represented by that force. More precisely, in 
modern vector notation, the Newtonian force created by a body of mass M on a 
body of mass m, can be written as 

 

2( ) Mm rf r G
r r

= −




          (13) 

 
Here G is the so-called gravitational constant, and r  is the position 

vector of m with respect to M, again, both considered as material points. Now 
this force can be thought of as existing by itself, separated from its roots as it 
were, i.e. disregarding its Keplerian origin. As we have mentioned before, it can 
even be considered a static force. The physical problem now moves on to the 
realm of mechanics: can this force explain the observed motions? and how? The 
answer is well known, and resides in the principles of dynamics, put forward by 
Newton in order to be able to profitably use the force. This time though, the 
force is assumed to be the independent cause of the motion. 

 Our way of writing the force here points to the fact that the force is 
attractive, being opposite to the orientation of the position vector. Its magnitude 
does not depend but on the distance between the two material points assumed to 
be correlated by force, and this in a very special way, shown above in Eq. (11) 
as specific to a Keplerian setting involving an elliptical orbit with the center of 
force in one of its foci: 

2( ) Mmf r G
r

=


      (14) 

 
Therefore  GMµ ≡ in formula (11) above. 
 Newton insisted at length on the fact that the force of gravitation should 

be proportional with the quantities of matter of both bodies involved in the 
interaction represented by force, otherwise nothing would make sense. This is a 
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rather arbitrary assumption by itself (for the only critical approach of the issue, 
at least as far as we can judge, see (Poincaré, 1897; Poincaré, 1921)). It was 
like Newton was mindful of the fact that, some two hundred years after him, the 
general relativity would have to come into existence, and he ought to create its 
possibility. However, he was apparently guided in his insistence only by the fact 
that a force like that from Eq. (14) is able to offer physical support to the 
marvelous synthesis by Kepler of the motion of the planet Mars. 

 Indeed, in modern terms, in order to obtain the Kepler laws it is 
sufficient to solve the Newtonian equations of motion written in the form 

 

2 0K rr
r r

+ =






     (15) 

 
as one proceeds routinely today. Here  K GM≡ , and so it is obvious that the 
description of motion by this equation is universal even in the more precise 
sense that it does not depend on the mass of the moving body. So, if the 
independence of the force (13) of its physical origin could still be counted as an 
arbitrary assumption, the undeniable success of the mathematics handling of Eq. 
(15) bestows upon it an equally incontestable actuality. For, this is the first 
moment where the idea of field, independent of matter, came up to science. 

 The Newtonian force from Eq. (13) is conservative, i.e. can be derived 
from a potential. The existence of a potential in the problem of classical 
gravitational field means however more than the mere law of conservation of 
the mechanical energy. It also opens the path of speculations regarding the 
structure of matter and of the characterization of a continuum from mechanical 
point of view, as initiated by Newton himself. In order to show this, let us 
notice that we can write the Newtonian force in the form 

 

1 1( ) ( ); ( ) GMf r m V r V r
r

= ∇ ≡


                       (16) 

 
where ∇  is the operation of gradient and 1V is the potential energy. Considering 
only the force per unit mass, the force from Eq. (16) is: 
 

1( ) ( )f r V r= ∇


     (17) 
 
This force is therefore an intensity, characteristic of the space around 

the mass assumed to exert that force. It is this space, thus physically 
characterized, that came to be known as a field: the gravitational field. The 
force exists in every point of space, no matter of the other physical properties of 
that point: it can be simply a position in space, as well as the location of a 
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material particle. Therefore the force is a continuous vector function of the 
position in space, and can very well be a characteristic of a material continuum 
filling the space. Which characteristic was not so long in coming to physical 
considerations, being, as it were, a necessity forced upon the mathematics of 
natural philosophy by the space expansion of material bodies. 

Indeed, inasmuch as one can think of a physical structure of a material 
continuum, this gives us the right to calculate the flux of force around a certain 
point in space. Considering the force from Eq. (13) as a static force, we can use 
a spherical surface around origin of coordinates. If we calculate its flux through 
a spherical surface of radius r according to the usual formula 

 
ˆ ( )

Sphere
n f r dA⋅∫∫






   (18) 

 
where n̂  is the unit normal to the sphere and dA  is its elementary area, we get 
an interesting result. As the unit normal vector to the sphere is just the versor of 
the position vector, and 2 sindA r d dθ θ ϕ= , we have 
 

ˆ ( ) 4
Sphere

n f r dA GMπ⋅ =∫∫






         (19) 

 
Therefore the flux of force of the gravitational field is, up to a universal 

factor, the mass of the material point creating the field – appropriately called the 
source of field. Now, the mass of that source can be represented, according to 
Newton’s definition of the density of matter (Newton, 1995, p. 9), by a volume 
integral: 

 
3( )

Volume
M r d rρ= ∫∫∫

             (20) 

 
where ()ρ denotes the Newtonian density at the chosen location and 3d r  is the 
volume element at the same location. Using the Eqs. (17), (19) and (20) we get 
 

3
1ˆ ( ) 4 ( )

Sphere Volume
n V r dA G r d rπ ρ⋅∇ =∫∫ ∫∫∫

  



          (21) 

 
where the ‘Volume’ is that of the corresponding ‘Sphere’. Further on, using 
Gauss’ theorem for the left hand side of this equation, we have 
 

{ }2 3
1( ) 4 ( ) 0

Volume
V r G r d rπ ρ∇ + =∫∫∫
  

                  (22) 
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In fairly general continuity conditions, the integrand of this equation 
should then be zero. This gives us the Poisson’s equation, relating the 
Newtonian density of matter that generates the field to the field potential. 
Usually, the potential is taken without the gravitational constant, which comes 
to a simple redefinition: 1V GV= . So, the equation of Poisson becomes the one 
we usually write today:  

 
2 ( ) 4 ( )V r rπρ∇ = −
 

             (23) 
 
This is the equation which, from the perspective of general relativity for 

instance, is the fundamental equation of the classical mechanics. It is not usually 
considered quite by itself, but in conjunction with the implicit idea that we are 
always able to know the density of matter. It is therefore an equation giving us 
forces, when knowing that we have at our disposal the matter creating, as it 
were, these forces, provided that one can characterize this matter by a density in 
the Newtonian recognition. More than this, it contains, in the background at 
least, the idea that the material point of Newton is not simply a position in 
space, as actually the rigorous calculation requires: it should be endowed with a 
space expanse to be occasionally considered. It is in this general acceptance that 
the equation is used in characterizing the Sagittarius A* case. 

 Now, obviously, by Eq. (20), and therefore by Eq. (23), we actually 
describe the part of space inside the matter. Then, the Poisson’s equation itself 
becomes part of fundamental physics. Indeed, it is really necessary in the 
description of nature, inasmuch as it provides us knowledge on the space inside 
matter. The hard part of the problem is that the Newtonian density is only a 
hypothesis, and quite unreliable at that, because the matter is not inherently 
homogeneous with respect to space, and we do not have access to its space 
details – at least not always. Nevertheless, within certain quite natural 
assumptions, that knowledge is inferrable, as it was actually the case all along 
the time. The most reliable, and the only one entirely realistic we should say, of 
these assumptions is offered by the particular case of the Poisson’s equation, 
where the density of matter is zero, viz. the Laplace equation. Indeed, the 
Newtonian potential of the force from Eq. (13) above is actually a solution of 
Laplace equation, thus characterizing the situation in vacuum. And this fact is 
quite natural: the Newtonian force has not been invented otherwise, but 
specifically for describing the interaction between material points in vacuum. It 
is only its extension to the space inside matter – allowed by the equation of 
Poisson, which in turn was allowed by the special assumption of Newton on the 
position of masses in the expression of the magnitude of force – that creates the 
impression that the force depends physically on the density of matter. This line 
of thought was initiated indeed by Poisson in 1812, and put on mathematical 
firm grounds by Gauss in 1839 (see (Gauss, 1842)). It is along it, that Einstein 
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found flaws to classical physics, and thus pressed forward the ideas that led to 
the general relativity. A brief history of the main points of development of the 
theory is perhaps in order. 

 In 1812 Poisson noticed that inside matter the law of attraction between 
different material points cannot be the law of Newton, because the potential 
cannot satisfy there a Laplace equation (Poisson, 1812). He has actually noticed 
that the Newtonian density of matter becomes instrumental there, and that the 
law of Newton corresponds in fact to a zero density (see also (Poisson, 1833)). 
Poisson might have thus sensed the possibility of still other forces, besides those 
going inversely with the square of distance, corresponding to nonzero density of 
matter. Only after the work of Gauss became it gradually clear that the force 
inside matter should be taken first and foremost as a flux, and therefore 
expressed by its divergence, rather than by its curl as in mechanics of a single 
material point. And this divergence has as expression the Newtonian density of 
matter. However, in this approach the matter has to have the essential property 
of vacuum, which turns out to be the homogeneity with respect to space, in 
order to be possible to correctly characterize it by a density. This desideratum 
is, nevertheless, far from being satisfied with no further qualifications, for the 
homogeneity is a matter of scale. As Einstein says somewhere, the universe is 
homogeneous only ‘on average’. The physics of last century added to this the 
essential observation that the property of homogeneity ‘on average’ should be 
respected at any scale. 

 Indeed, ‘on average’ the density of matter is never zero, not even 
hypothetically. Although we can imagine some smearing out procedure in order 
to calculate a density, that doesn’t mean that we hit the real thing. As a matter of 
fact, the evaluations of the density of matter in universe taken today into 
consideration as scientific figures, don’t even represent the Newtonian density 
as required by the Poisson’s equation, but numbers obtained from various rough 
evaluations, with the substantial contribution of some numerical densities in the 
sense of Hertz (Hertz, 2003). These are combined with even more arbitrary 
evaluations of the volume of space where evaluations are made, assuming, still 
quite arbitrarily, that the matter should have a certain constitution in those 
regions of space. This is also the manner of evaluation of density for all the 
analyses related to the case of Sagittarius A*. However, with so many 
uncertainties in our hands, one can hardly think of a right quantitative 
appreciation of the density of matter! Useless to say, the very same is the case 
of evaluation of any density to be used into Poisson’s equation. 

 
5. Back to the General Newtonian Forces 

 
 We can see, therefore, that the development of differential calculus 

gradually spirited away the identity of force so to speak, i.e. the physical 
parameters representing the orbit from the expression of the magnitude of force. 
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Indeed, the force could now be calculated as a solution of a differential equation 
in satisfactory limiting conditions. The force thus became a plain vector. And 
the most natural among the analytical conditions a force vector should satisfy, 
when referring it to a continuum, seem to be the classical ones, generalizing the 
properties of the Newtonian force from Eq. (13), which show that it acts in 
vacuum and is conservative: 

 

0; 0f f∇⋅ = ∇× =
  

             (24) 
 
In fact, at some moment, the classical theory of forces even stipulates 

specifically that a certain force vector can be split into a sum of a divergence-
free part and a curl-free part – the so-called Helmholtz decomposition – and that 
the decomposition is unique. The conditions (24) legalize, so to speak, the two 
essential properties of the Newtonian gravitational force, only implicitly 
contained in the Poisson equation. The first condition says that the source of 
forces is the Newtonian density, but a vacuum force, like the Newtonian 
gravitational force, has no source; the second condition shows that the force is 
central, therefore conservative. 
 Let’s say that we have obtained a formula for the magnitude of force in 
vacuum. The essential condition in order to be able to even use that formula is 
obviously that the force should satisfy the first Eq. (24). The second condition is 
only incidental, so to speak. However, if the magnitude of the force should 
depend exclusively on distance, then both conditions are satisfied only for the 
Newtonian force with magnitude inversely proportional with the square of the 
distance. Indeed, a central force with the magnitude depending exclusively on 
distance can be written in the form 
 

( ) ( ) rf r f r
r

=




          (25) 

 
where ( )f r  is the magnitude of force. The second condition from Eq. (24) is 
automatically satisfied, while the first condition amounts to  
 

2( ) 2 ( ) 0 ( )rf r f r f r
r
µ′ + = ∴ =                    (26) 

 
Here the accent denotes the derivative with respect to the variable. Now 

it becomes obvious that the central forces inside matter, with magnitude 
depending exclusively on distance, require also a certain behavior of the density 
of matter depending on that distance, otherwise it is not a possible force whithin 
matter. Such a property is hard to understand geometrically, but is easy to 
understand… parametrically, as it were. More specifically, it is hard to 
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understand that a continuum has density decreasing in the same way in every 
direction starting from each one of its points. This would mean contradiction 
indeed, when we consider two different neighboring points. It is very easy to 
understand though, that a continuum has a certain density depending on the 
distance between its points, in cases where this distance can be defined. 

 However, if a force is central – therefore Newtonian – and has the 
magnitude dependent not only on distance but on direction too, then instead of 
Eq. (25) we must have 

 

( ) ( , , )f r x y z rψ=


          (27) 
 
where x, y, z enter the expression of the magnitude of force by some algebraical 
combinations, other than the magnitude of the radius vector. In such a case the 
two conditions (24) boil down to 
 

3 0; 0x r
x
ψ ψ ψ∂

+ = ×∇ =
∂∑



                   (28) 

 
Therefore the function ψ  must be a homogeneous function of degree (–3), 

in the first place. If we limit our search to the functions derivable from the 
elliptic orbits of the planets, as Newton actually did, then such a function cannot 
be but of one of the following forms, also derivable from the second principle of 
dynamics (Darboux, 1877): 

 
3 3 2( ) ; ( )i j

ija r a x x− −⋅
           (29) 

 
Here the vector a  and the entries of matrix a are arbitrary constants, the 

coordinates are considered as contravariant, and the summation convention is 
respected. The expressions of forces are defined up to a multiplicative constant. 
We recognize in these the forces deriving from the Corollary 3 of the 
Proposition VII of Newton’s Principia. Enforcing on them the second of 
conditions (28), shows that the first case is impossible, because the vector a  
would then have to be null identically. The second case works only if the matrix 
a is a multiple of the identity matrix. But this shows that the force is simply the 
Newtonian gravitational one, with the magnitude inversely proportional with 
the square of the distance. We thus find the Newtonian force as a property of 
field, with no reference whatsoever to motion, once it is conditioned by Eqs. 
(24). As we already expressed it, the identity of orbit – and therefore of force 
itself – is lost. However, it comes back, only this time through the initial 
conditions serving to solve the differential Eq. (15). 

 The inference about the existence of such particular forces in a problem 
of astrophysics should therefore be conditioned by the fulfillment of conditions 
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(28), therefore of the conditions (24). Those conditions reduce the class of 
forces, as Eqs. (29) show it in the most general case. Only the existence of 
Keplerian orbits would guarantee that these forces depend exclusively on 
distance, and moreover that their magnitudes are inversely proportional with the 
square of distance. This is a condition plainly satisfied by all of the results in the 
Sagittarius A* case: it came to attention of the scientific community by the very 
specific stellar orbits in the first place! And as Sagittarius A* is always in one of 
the foci of these orbits, which are of course elliptical, there can be no question 
of the reality of Newtonian force (13) in this case. Provided, of course, the 
matter exists in that place, which is what the assumption of the existence of a 
black hole there brings about. We are not quite so sure as to what extent, and in 
what particular conditions, the Kepler’s second law, in its differential form, is 
satisfied for each one of those orbits. For, within Newtonian ideas, only the 
second of Kepler laws would be a clear indication of the presence and location 
of a center of force. As it happens though the theory of Newtonian forces works 
regardless of that law, and the conclusions of the present work should therefore 
remain theoretically valid (see (Mazilu, 2010; Mazilu and Agop, 2012)). 

 
6. The Variation of Orbit and the Production of Fields 

 
One of the main reasons for which we must appeal to the original 

Newtonian theory of forces in problems of astrophysics, like the one presented 
by the Sagittarius A* case, is that such a theory uses, almost explicitly we 
should say, an analogy which transcends the space scale of the problems in 
which this kind of forces is involved. The initial analogy was the one already 
mentioned in passing before, between sling shooting and the motion of planets. 
Then, with the gradual introduction of classical dynamics, the Eq. (15) made its 
entrance into the mathematics related to mechanics. And as long as we consider 
this equation as fundamental, one can prove that the force given by Eq. (13) is 
the only one justified from the point of view of space scale transcendence. 
Indeed, the Eq. (15) transcends the space scale, and no other force introduced in 
it satisfies this condition (Mariwalla, 1982). Therefore we are entitled to use the 
classical dynamics in describing the central part of the Milky Way just as we are 
entitled to use it in the case of describing planetary motions, or to state that the 
the stars move around the galactic nucleus following Keplerian orbits. It is at 
this juncture though, that we need to pay close attention to the concept of force 
to be used in astrophysical matters, for it might indicate some other fundamental 
things if it is to consider the point of view of space scale transcendence. 

 One historically important fundamental space scale transcendence is 
that allowing us to extend the conclusions of classical dynamics in the atomic 
realm. This means that the planetary – or nuclear – model of atom should be the 
only one entitled to close consideration from a theoretical physical point of 
view. This was indeed the case. Only, on this occasion we have learned that in 
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the microscopic realm the model does not work the same way as the planetary 
system proper. For, the light gets in: as long as electromagnetic phenomenon it 
should be attached to the atom, due to the electrical properties of this last one. It 
is here the point where the contradictions started brewing, forcing us to assign 
the light to the transitions between electronic orbits (Bohr, 1913). While the 
original Bohr’s work is refering to the simplest atomic model – the one for 
which the electronic orbit is a circle – there are strong reasons to believe that his 
conclusion is quite general: the light or, in general, any perturbation that can 
reach our eyes directly or through the intermediary of measurement devices, is 
due to transitions between orbits. The arms of spiral galaxies can thus be 
interpreted as geometric loci of such transitions points (Mazilu, 2010; Mazilu 
and Agop, 2012), whereby the stars, revolving along Keplerian orbits around 
galactic nucleus, conglomerate in stable structures. 

 Therefore, through the planetary model of atom, theoretical physics 
actually just enacted a status quo, naturally existing a priori by the space scale 
transcendence. However, by Bohr’s postulates, it is quite precise in the choice 
of the terms of analogy so to speak: the atomic model from microcosmos is 
analogous to the galaxy from macrocosmos, rather than to the planetary system 
per se. And by this, theoretical physics reinstated with full right the initial 
Newtonian forces, identified by the parameters representing the orbit from 
which they have been calculated. One might say that quantum mechanics of the 
atom was just a reaction of natural philosophy, which reclaimed the lost identity 
of the orbit in the expression of forces, or the lost identity of forces given by the 
orbit from which it was calculated. 

 
7. The Characteristic of Forces Transcending 

Mechanics 
 
The second of conditions (24) precludes the Newtonian forces from 

transcending mechanics, for it is equivalent with the conservation of mechanical 
energy, to the extent this is equivalent to work. The general Newtonian forces 
do not have this restriction: they are dissipative. For instance, the force 
characterizing a material point describing a Kepler orbit is given, according to 
Glaisher, by Eq. (5). Without any loss of generality, it can be written in vector 
form as 

( )3
13 23 33

( , ) rf x y
a x a y a

µ
=

+ +





                  (30) 

 
where ( , )x y  are the coordinates in the plane of motion. This force is of the form 
given in Eq. (29) with an obvious identification of function ψ, and for a33 = 0, in 
order to be considered a vacuum force. The general expression independent of 
the plane of motion is obviously the one using the first expression (29): 
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( ) ( )3 3( , , ) ( , , )rf x y z x y z
a r a r
µ µψ= ∴ =
⋅ ⋅





   

  
    (31) 

 
The first condition (29) is implicit, while the second condition is no 

more satisfied. In fact, we have 

43
( )
a rf
a r

µ ×
∇× = −

⋅

 



 

             (32) 

 
Therefore, the elementary work of this force is not integrable in the 

ordinary sense. However it is integrable in the Frobenius sense, therefore in the 
thermodynamical sense, i.e. we have 

 

L f dr wdFδ ≡ ⋅ =


           (33) 
 
for a certain functions w and F. This can be proved directly by noticing that the 
Cartan integrability condition ( )^ lim ^   0

x
L d Lδ δ

→∞
= , where ‘^’ is the sign of 

an ‘exterior’ operation (in this case differentiation) on differential forms, is 
satisfied in view of Eqs. (31) and (32). 

The classical motion sustained by the force from Eq. (31) is a Keplerian 
motion. This can be seen by solving the Binet’s equation of the Newtonian 
problem of motion 

3

3cos
au u µ
θ

′′ + =         (34) 

 
where u ≡ 1/r as usual, and the derivative is taken with respect to angle θ  
whose origin is the direction of the vector a . The general solution of this 
equation 

3
3

1 2
2( ) ( ) cos sin

cos
au w a w µθ µ θ θ
θ

= − + +
   

     (35) 

 

where 1w  and 2w  are some initial conditions of the problem. In the Cartesian 
coordinates ξ  and η  with respect to the center of force Eq. (35) becomes 
 

3 2 3 2
1 2( 2 ) ( 2 ) 0w a w aµ ξ ξη µ η ξ− + + − =                  (36) 

 
The center of the orbit has the coordinates 
 

63
2

3 2 6 2 3 2 6 2
1 2 1 2

;
2 2c c

w aa
w a w a w a w a

µξ η
µ µ µ µ

= =
− − − −             

(37) 
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Therefore the physical parameters entering the force – the components 
of the vector a  – determine also the characteristics of the Keplerian orbit 
induced by that force. This orbit is plane, with the plane determined by the 
initial conditions represented by the vector w



. The work of the force performed 
on the orbiting body is not zero, as in the case of the forces with magnitude 
depending exclusively on distance, but can be recognized by a flux through the 
surface enclosed by the orbit, for we have 

 
4( ) ( ) 3 ( ) ( )

Orbit Surface Surface
f r dr f dS a r a r dSµ −⋅ = ∇× ⋅ = − ⋅ × ⋅∫ ∫∫ ∫∫
   

     

   
(38) 

 
What, though, if the orbit is not is not a closed curve?! In the Sagittarius 

A* case, for instance, all the data we have at our disposal, except the one 
referring to S02, come only with segments of the whole orbit. Therefore, such 
data would only refer to the work done by force along an open segment of the 
orbit, and the proper question would be the to ask about the variation of this 
integral along the orbit. A solution to this problem is provided by the transport 
theorem (Betounes, 1983)  in the form 

 

( ) ( )
[( ) ]

t t

P

Q

d f dr f v dr f v
dt ϕ ϕΓ Γ

⋅ + ∇× × ⋅ = ⋅∫ ∫
  

   

               (39) 

 
Here we have a subtle understanding of things: Γ  is the segment of 

curve initially accessible. It evolves due to the motions of heavens – not only of 
the body on which we have concentrated our attention. The evolution is 
accounted for by a family tϕ of morphisms depending on time in the sense that 

time is a continuous index of the family: for each moment of time there is a 
morphism mapping the initial segment Γ , between points P and Q of the orbit, 
to the current one denoted ( )tϕ Γ . The Eq. (39) can be reckoned as a continuity 

equation, showing how the power generated by force is dissipated. 
 In the particular case of Eq. (32) we have 
 

3 4 3

( ) ( )
( ) ( ) 3 ( ) ( ) ( ) ( )

t t

P

Q

d a r r dr a a r r v dr a r r v
dt ϕ ϕ

− − −

Γ Γ
⋅ ⋅ − × ⋅ × ⋅ = ⋅ ⋅∫ ∫
             

(40) 

 
Because the motion is plane, the second term is zero, so that we are left 

with 
3 3

( )
( ) ( ) ( ) ( )

t

P

Q

d a r r dr a r r v
dt ϕ

− −

Γ
⋅ ⋅ = ⋅ ⋅∫
       

          (41) 
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which means 

{ }3 2
2 3( )

cos ( )(cos )
(cos )t

P

Q

d vr dr
dt rϕ

α θθ
θ

− −

Γ
=∫             (42) 

 
where ( )α θ  is the angle between the current position vector and the current 
velocity vector. 

In case we use the geometry to identify the displacement with the 
velocity, instead of (37) we must have 

 

12 22 11 12( )
yx vv

a x a y a x a y
=

− + +
    (43) 

so that Eq. (36) becomes 

( )
11 12 12 22

42 2
11 12 22

2 2
11 12 22

( ) ( )( ) 3
2

( 2 )

a x a y y a x a y xrotf v dr
a x a xy a y

d a x a xy a y

µ + − +
× ⋅ = ⋅

+ +

⋅ + +



 

        

(44) 

 
Both the Eqs. (38) and (44) show that when the orbit is a circle, the 

dissipative term is zero: in order to have dissipation the elliptical orbit is a 
necessity! 

A rational approach of the problem of Newtonian forces is that where 
one accepts that the centripetal force exists in heavens, but it is submitted 
strictly to the third principle of dynamics. Therefore the centripetal force cannot 
be calculated but only from the centripetal acceleration, it is not the Newtonian 
force. This principle leads to reasonable results. Indeed for the conic section 
from Eq. (1), referred to its center, the curvature vector defined as usual by 

 

( )
2 2

3 22 2

2
ˆ; xx y xy x y yy x

x y

f f f f f f f
k kn k

f f

− +
= ≡

+



           (45) 

has the magnitude 

( )
33

3 22

ak
x x

∆
= −

a
            (46) 

 
Now, the centripetal acceleration is given by the general expression 
 

( )
2

2 33
3 22

a vkv
x x

∆
≡ −

a
    (47) 
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Here v  is the magnitude of the tangential velocity, common to both the 
orbit and the oscullating circle. As the magnitude of the tangent velocity as 
given by Eq. (43) should be 

 
2 2v x x∝ a                (48) 

 
the magnitude of the pure centripetal force becomes 
 

( )1 22
f K

x x

∆
=

a
                (49) 

 
One can see that in the special case in which the orbit is a circle, the 

centripetal force is inversely proportional with the radius of the circle, as it 
should be. This is actually the long distance force used by Sciama to justify the 
universal inertia. 

 A little discussion on the importance of the tangent dynamics – the 
hamiltonian dynamics here. If the velocity from Eq. (43) is also the unique 
velocity of the material point in universe. then its components must be taken as 
the time derivatives of the coordinates, and the equations of motion are the 
Hamilton equations 

0 1
;

1 0
x x

− 
= ≡  

 
Ia I                    (50) 

 
This is the essential idea of the theory of constraints! In general though, 

we need to take for the velocity 
 

v x= Ia        (51) 
 
and the condition of tangency still needs explanation. This is the general 
problem of Newton: what are the possible orbits in a point of one of them, taken 
as reference orbit? In other words, what are the orbits in a point, corresponding 
to the same velocity vector? The Eq. (51) shows that they are given by the 
differential equation 
 

( ) 0 ( ) 0d x d x dx= ∴ + =a a a                       (52) 
 
which is, in fact an evolution law. In case the orbit is not a parabola, this 
equation of evolution can be written as an equation of motion for coordinates: 
 

1( )dx d x−= −a a                  (53) 
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What is the meaning of this evolution? Let’s assume that the orbit varies, 
therefore the quadratic form defining it varies. This variation implies both the 
variation of the vector and the variation of the matrix, so that we must have 

 
d x x dx x x d x x dx= + +a a a a                      (54) 

 
Using now the Eq. (53), shows that the variation of the quadratic form 

is only dictated by the variation of its coefficients: 
 

d x x x d x= −a a                         (55) 
 
Moreover, if one takes even the quadratic form from Eq. (25) as it is, 

viz. nonhomogeneous, then its variation is given by 
 

1
3 32 2d x x x d x a d x da x−= − − +a a a a            (56) 

 
Now one can see that this variation has a certain form for a certain 

evolution of the center of force itself. If, for instance, one takes 
 

1
3 3( )da d a−= a a                      (57) 

 
then the variation of the quadratic form reduces to the variation of the 
coefficients as before. 

One can therefore guess that there is a certain correlation between the 
motion of the center of force and the motion of the current (material) point 
along an orbit. It is like, if the current point on the orbit describes a Ptolemaic 
epicycle, the center of force must describe a conic, which shrinks or extends in 
dimensions as the motion along the orbit proceeds. The problem would then be 
to find the correlation between the two ‘epicycles’. In the classical case one 
talks about the motions of the material components around the common center 
of mass. 

 Condition (57) expresses the fact that the family of conics described by 
the variation of the parameters is a family having the same center. Indeed, the 
equation of the center of the conic (25) is 

 

3 0ca x+ =a         (58) 
 
Now, if the center is fixed, then we have by differentiation: 
 

1 1
3 3( ) 0da d a− −+ =a a              (59) 
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Expanding this equation gives the Eq. (57). Here we need to always 
remind that in solving Eq. (57) we don’t necessarily have the null initial 
condition, but this is given by (58) whereby the initial values of the entries of a 
are the values corresponding to the current orbit, where the differentiation is 
performed. Onbly in case (0, 0) are the coordinates of the center of current orbit 
one can have null initial condition, but this is in general just a convention. 

 The classical theories are usually focused on the idea of the same 
center of force, according to which the geometrical center of the orbit varies. 
The best known example is that of the perihelion rotation. The equation of 
evolution of the center of orbit over the family is in this case the Eq. (59) 
above. There is therefore a duality here: a family of orbits of the same 
geometrical center is described by an evolution of the center of force, while a 
family of orbits of the same center of force is described by an evolution of the 
geometrical center. The orbits of the same geometrical center are then apt to 
describe, for instance, motions inside the extended attractive body (the Sun, 
the Earth, etc), while the orbits of the same center of force are apt to describe 
motion inside the extended attracted body (the Earth, the Moon, etc.). 
Nevertheless, the center of force, as well as the geometrical center, have 
similar behavior from a kinematical point of view. The difference between the 
two descriptions cannot come but from the fact that the two bodies have 
different physical properties, like viscosity for instance. 

 
8. Conclusions 

 
Many astrophysicians argue for the existence of a supermassive black 

hole at the center of Milky Way, in the location of the radio source Sagittarius 
A*. In our opinion the evidence suggest just the opposite.  

While the observational data on the orbits of the starry objects around 
Sagittarius A*, being of a projective character, are entirely reliable, their 
physical explanation uses quite a particular type of Newtonian forces, namely 
those with magnitude depending exclusively on the distance between bodies. 
This limitation assumes a priori that the bodies connected by such forces are 
special material points, viz. space positions endowed with mass. At space scales 
such as that of the galactic center region in discussion, this assumption is not 
realistic, and therefore, implicitly, such particular forces are themselves not 
quite realistic. Still using Newtonian forces in argument, strongly suggested by 
observational data as a matter of fact, one should allow, on such an occasion, 
their full generality. This means that we only need to assume that they are 
central forces with no other further constraints. 

Within the framework of the Newtonian theory of forces this freedom 
has important theoretical consequences discussed at length in the sections 
above. Among these consequences, maybe the most important one, from an 
astrophysical point of view, is that the presence of a supermassive black hole in 
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the center of Milky Way might not be a sustainable assumption. Moreover, if 
we look at the fact that not all scientists agree with the current definition and 
essential characteristics of a black hole (Hawking, 2014): “It has been 
suggested that the resolution of the information paradox for evaporating black 
holes is that the holes are surrounded by firewalls, bolts of outgoing radiation 
that would destroy any infalling observer.  Such firewalls would break the 
CPT invariance of quantum gravity and seem to be ruled out on other grounds. 
A different resolution of the paradox is proposed, namely that gravitational 
collapse produces apparent horizons but no event horizons behind which 
information is lost. The absence of event horizons mean that there are no 
black holes - in the sense of regimes from which light can’t escape to infinity. 
There are however apparent horizons which persist for a period of time. This 
suggests that black holes should be redefined as metastable bound states of the 
gravitational field. It will also mean that the CFT on the boundary of anti 
deSitter space will be dual to the whole anti deSitter space, and not merely the 
region outside the horizon.” 
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SAGITTARIUS A*: UN ARGUMENT ÎMPOTRIVA EXISTENȚEI 

UNEI GĂURI NEGRE ÎN CENTRUL CĂII LACTEE 
 

(Rezumat)  
 

Literatura din domeniul astrofizicii a încercat să contruiască un argument 
pentru existența unei găuri negre supermasive în centrul Căii Lactee, în locația sursei 
radio Sagittarius A*. În opinia noastră, folosind argumente de aceeași natură, dovezile 
existente arată exact contrariul. Astfel, în timp ce datele observaționale despre orbitele 
obiectelor stelare din jurul lui Sagittarius A*, având un caracter proiectiv, prezintă 
încredere, explicația lor fizică se bazează pe o categorie aparte de forțe Newtoniene, și 
anume acelea pentru care tăria lor depinde exclusiv de distanța dintre corpuri. În primul 
rând, această limitare presupune a priori faptul că aceste corpuri conectate de forțele în 
cauză sunt puncte materiale speciale, sau altfel spus sunt poziții în spațiu cu masă. La 
scări spațiale precum cea a centrului galactic în discuție, această presupunere nu este 
realistică și, prin urmare, în mod implicit, aceste forțe particulare nu sunt ele însele 
destul de realiste. Păstrând raționamentul acestor forțe Newtoniene, sugerate de fapt de 
datele observaționale, ar trebui, în acest caz, să acceptăm caracterul lor general. Prin 
urmare, trebuie doar să presupunem că acestea sunt forțe centrale, lipsite de orice alte 
constrângeri. Această libertate are importante consecințe teoretice în cadrul teoriei 
Newtoniene a forțelor, consecințe ce sunt discutate în prezenta lucrare. Printre acestea, 
cea mai importantă, din punctul de vedere al astrofizicii, este aceea că prezența unei 
găuri negre supermasive în centrul Căii Lactee poate să nu fie o presupunere 
sustenabilă. O alternativă este prezentată. 
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Abstract. An extended Kompaneets equation has been theoretically 

investigated. Closed form stationary solutions have been derived in terms of 

Heun confluent functions. These functions are governing the distribution of 

scattered photons. 
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1. Introduction  

 

Intensive studies over the interaction between radiation and electrons 

through the Compton scattering processes reveal a rich and very exciting 

evolutions of both the photon spectrum and the involved electrons. One may 

note that the comptonization process seen through a multiple scattering scenario 

is encountered at the level of relativistic corrections to the Sunyaev-Zeldovich 

effect (Taylor and Wright, 1989) which are revealing complex mathematical 

representation for the spectral distortion. When it comes to analyse 

mathematically the spectrum of the distorted radiation field it proves that one 
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should deal with forms of Kompaneets equation, the most exciting for 

exploration being the corrective ones for the sake of relativistic effects.  

In the last decades, with the help of SuZIE and MITO telescopes, a 

series of 16 clusters were observed at the level of higher frequencies (Rephaeli 

et al., 2005), where a significant intensity spectral change as a result of photon 

scattering by thermal electrons is to be recorded. Exact expressions for the 

relativistically photon intensity distortion are indispensible, most ardently when 

it comes to compute precise values of cluster and cosmological parameters. 

In this study, we are mainly concerned in the correlation of the 

Kompaneets equation‟ extensions and its solutions in terms of Heun type ones. 

Nowadays, this topic being a fervent one, extensions on the Kompaneets 

equation to the relativistic regime having an outstanding role permitting, for 

instance, a more accurate determination of spectral quantities in higher 

energetic regimes. 

 
2. Spectral Distribution of Photons Dictated by 

 Heun Confluent Functions 

 

The dimensional nonlinear Kompaneets equation (Kompaneets, 1957), 

also known as the photon diffusion equation, has the above mathematical 

formulation, 

 4 2

2

1
x

n
x n n n

t xx
  

     
  

,                              (1) 

 

where 0  , 0   and 0   define some arbitrary constants. The change of 

distribution function  ,n x t  is treated as a diffusion of photon-gas in the 

„frequency space‟ along the frequency axis ex h kT .  

Eq. (1) models the Compton scattering type interaction between a low-

energy homogeneous photon gas and a rarefied electron gas. A more physical 

configuration proposed also by Kompaneets for the equation of radiative 

transfer, applicable in case of Comptonization-hardening for the energetic 

severe condition 2cmkTh ee    , is 

 

4 2

2 2

1e
e T

e

kTn n
N c x n n

t x xm c x


    
    

    
.                   (2) 

 

It appears that Eq. (2) is no longer adequate within the frame of hard X-

ray astronomy where the condition ekTh    is often valid. In this case, using it 

would imply the presence a significant error in the final results. 
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A significant improvement of Eq. (2), under the much looser condition 
2cmkT ee    and 2cmh e  , has been deduced by D.B. Liu et al. in (Liu et al.,  

2004) by extending the Kompaneets equation 

 

 4 2

2 2 2

1 7
1 1

10

e e
e T

e e

kT kTn n
N c x x n n

t x xm c x m c


      
             

.      (3) 

 

In the study of Sazonov and Sunyaev (Sazonov and Sunyaev, 2000), 

various elaborated generalized forms of kinetic equation which consider a 

density of correction terms responsible, for instance, for quantum effects, 

induced scattering or Doppler effect, have to be found. Relativistic corrections 

present within these versions of Kompaneets equation may play a significant 

role in problems such as the formation of shock waves in the photon spectrum 

during the phenomenon of Bose condensation of photons (Zeldovich and 

Sunyaev, 1972) or plasma heating (Levich and Sunyaev, 1971).  
Within our study, following an analytical approach, we will focus on 

finding closed form solutions for the following extension of the Kompaneets 

equation: 

   4 2

2

1
1 1

n n
x ax bx n n

t x xx

    
         

                     (4) 

 

We mention that our class of extended Kompaneets equation, namely 

Eq. (4), is similar to the one proposed by Liu and coworkers, with the single 

distinction, the one that the Doppler term is being attended by a pre-factor.  

Within the hypothesis of stationary, this equation is reduced to the 

Riccati type form 

    

 
2

4 21

n Q
bx n n

x x ax


  

 
                              (5) 

 

with Q , as we find in (Dubinov, 2009), defining a constant whose physical 

meaning is of the photon flux in the implied frequency domain. The Riccati 

types equations are frequently encountered within the Kompaneets studies 

where these are discussed in detail. 

In order to solve Riccati form (5), firstly we will invoke the change of 

variable   1 lny b x  which leads to the new representation 

 

 
2

4 21by by

n Q
n n

y e ae


  

 
.                               (6) 
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At this step, the change of function given by 

  

    

'

n





                                                      (7) 

 

provides us with a second order differential equation for the function  : 

 

 
'' '

4 2
0

1by by

Q

e ae
    


                           (8) 

 

A new change of function given by 

2 2
exp ( )

2

byQe by
u y

b

 
    

  
 

leads to the following differential equation for the unknown function  u y : 
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,     (9) 

 

the solution of this equation being given by 
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so that we can deduce that 
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1

2 2 2

1 1 1
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b Q a Q a Q
x HeunC

b bbx b ax


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    (11) 

 

This expression allows us to determine the intricate photon distribution 

function defined in (7) in terms of the HeunC functions, 

 

 
2 '
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Q x HeunC
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HeunCbx


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To be noted that the spectrum of the scattered photons is intimately 

dependent on the photon flux Q  in the respective frequency region. 

For practical calculations, it is more elegant and transparent to recall the 

polynomial representation of the Heun confluent function. Heun function, 

 , , , , ,HeunC z     , admits a polynomial representation when the series 

expansion for it truncates, so that in this situation the function degenerates into 

a polynom. In our case, by invoking the algebraic constriction (necessary, but 

not sufficient) for this to happen, namely 
 

2

2
n

 
 

  
   

 
,                                (13) 

 

the identified parameters in (12) makes us obtain the relation 
 

  
2 1

4 4

a Q b
n

b b


                                           (14) 

 

which is equivalent with the following parametric constriction 
 

4 2 1a Q nb b   .                                     (15) 

 

To be noted that n  is a positive integer defining the polynom‟ degree. 

For more insights into polynomial representations, we recommend the 

study in (Fiziev, 2010) where it is to be found an innovative derivation of 

confluent Heun‟s polynomials.  

As Heun functions are mathematically difficult to operate with, due to 

the singularities or to their problematic act of derivation a series, their 

polynomial forms are very useful. These allow a compactified and a more 

tractable representation. 

 
3. Conclusions 

 

Within an analytical approach, closed form solutions for a 

relativistically corrected Kompaneets equation have been determined. The 

spectrum of the  scatterred photons proved to be non-trivially determined by the 

Heun confluent functions and intimately connected with the photon flux in the 

respective frequency domain. The polynomial Heun solution has been discussed 

in terms of parametric constriction. 
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CLASA DE SOLUȚII HEUN PENTRU O EXTENSIE A ECUAȚIEI 

 CINETICE KOMPANEETS 

 

(Rezumat) 

 

O formă extinsă a ecuației Kompaneets a fost investigată teoretic. Au fost 

determinate soluții staționare în formă închisă, exprimate prin funcții Heun confluente. 

Aceste funcții guvernează distribuția fotonilor împrăștiați. Soluția polinomială Heun a 

fost analizată în termenii constrângerii parametrice. 
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Abstract. Microbiota refers to the total microorganisms of the microbial 

community, while the term microbiome refers to a group of microbes that 

includes bacteria, bacteriophages, fungi, protozoa and viruses. Microbiota is 

considered to be an organ with its own functions that can modulate the 

expression of genes involved in the defense of mucosal barrier, angiogenesis and 

postnatal intestinal maturation. Changes in the composition of gut microbiota, 

i.e. dysbiosis, may be associated with nosocomial infections, necrotizing 

enterocolitis in premature infants, inflammatory bowel disease (IBD), obesity, 

rheumatologic autoimmune diseases and allergies. Dysbiosis increases intestinal 

permeability and the microbial translocation through the mucosa, thus resulting 

in inflammation and metabolic endotoxemia. Therefore, a large number of 

proinflammatory cytokines and oxygen free radicals are generated, all of which 

are considered triggers for the development of immuno-inflammatory systemic 

diseases. Many clinical studies have examined the link between autoimmune 

diseases and dysbiosis using 16S rRNA genetic analysis. Clear evidences of 

association with intestinal dysbiosis have been described in patients diagnosed 

with IBD, spondylarthropathies, rheumatoid arthritis or systemic lupus 

erythematosus. A mathematical model based on group invariance is developed.  
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1. Introduction 

 

Bacterial intestinal flora includes about 10
14

 bacteria which represents 

10 times more than the number of cells in the human body (Arrieta et al., 

2014; Saavedra and Dattilo, 2012). Since birth, the normal intestinal 

microbiota contributes to the development of intestinal function, modulates 

the immune system, helps to regulate and maintain intestinal function, 

provides protection against infection and tolerance to food intake. We can talk 

about a symbiosis of the bacteria-host interaction. Intestinal microbiota 

diversity includes more than 1,500 microbial species, dominant bacteria group 

being phyla species: Firmicutes and Bacteroidetes. The phyla group also 

includes: Proteobacteria, Actinobacteria, Fusobacteria and Verrucomicrobia 

(Human Microbiome Project C, 2012). 

 Microbiota has multiple roles in the development of the intestinal 

immune system by: the modulation of intestinal mucous layer and lymphoid 

structures, differentiation of immune cells and immune mediators 

production, positive stimulatory effect on the innate and adaptive immune 

system (Akira, 2006).  

 Changes in the composition of gut microbiota - dysbiosis - may be 

associated with nosocomial infections, necrotizing enterocolitis in premature 

babies, IBD, obesity, rheumatologic autoimmune diseases and allergies. 

Dysbiosis increases intestinal permeability and the microbial translocation 

through the mucosa, thus resulting inflammation and metabolic endotoxemia. 

Therefore, a large number of proinflammatory cytokines and free radicals are 

generated (Seksik and Langella, 2008). 

 Dysbiosis influence the intestinal mucosa by interacting with epithelial 

cells and by the enteric nervous system, leading to changes in intestinal 

motility, sensory function and the perception of pain (Konturek, 2011). Also, 

dysbiosis is associated with the development of gastrointestinal and 

extraintestinal disorders, as well as with an  impaired liver function  (Seksik and 

Langella, 2008; Mondot et al., 2013). 

 

2. Microbiota and IBD 

 

Genetics and environmental factors and the host immunity forms a triad 

that it has been shown to regulate the TCR function (Toll like receptor). When 

this relationship is disturbed, it can develop aberrant TCR signals which 

contribute to the formation of inflammasomes that will cause intestinal 

inflammation (IBD) (Frosali et al., 2015).  
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 Risk factors for the occurrence of IBD include factors that influence the 

composition of intestinal microbiota - maternal exposure, breastfeeding, diet, 

antibiotics, infections and factors affecting mucosal immune system - smoking, 

NSAIDs, oral contraceptives, vaccination, intestinal permeability, appendectomy, 

stress (Danese et al., 2004). A model of colitis on laboratory mice showed that, 

after the administration of 4 antibiotics for 4 weeks, the deletion of commensal 

gut microbiota can cause severe intestinal mucosal impairment (Rakoff-Nahoum 

et al., 2004). Extended use of antibiotics is associated with increased risk of 

Crohn's disease (CD), but not with ulcerative colitis (UC) (Ungaro et al., 2014). 

 One study attempted to investigate the impact of IBD on intestinal 

microbiota being analyzed 89 sigmoid mucosal biopsies in healthy individuals 

and in patients with CD and UC who achieved remission. On these biopsy 

samples 16sDNA and rARN genetic analysis were performed. Results showed 

an abundance of Bacteroides in the control group and in patients with UC, an 

increase of Firmicutes in both IBD, a reduced activity of Faecalibacteria in 

patients with CD, an increase in the prevalence and activity of Papillibacter in 

healthy persons; only Prevotella was positively associated with CD (Rehman et 

al., 2015). 

 Dysbiosis in CD is characterized by: a greater number of mucosal 

bacteria compared to healthy individuals, alteration of the balance between 

beneficial and aggressive bacteria and by the reducing of the phyla diversity 

group Firmicutes and Bacteroides (Sartor, 2011). Increased prevalence of 

intracellular pathogens in CD may be due to the innate immune system's 

inability to control persistent infections caused by intracellular bacteria. 

 Patients with ileal and colonic CD have a low concentration of 

commensal bacteria concerning the Clostridiales group as Faecalibacterium 

prausnitzii and Roseburia (Willing et al., 2010), these being regarded as 

predictive marker for postoperative ileal CD (Sokol et al., 2008). An increased 

number of bacterial species found in CD include Escherichia coli especially B2 

and D groups and those with adherent / invasive strains associated with a severe 

ileal disease (Kotlowski et al., 2007). 

 

3. Microbiota and Inflammatory Rheumatic Diseases 

 

Except reactive arthritis in which there are clear evidences that bacterial 

infections can cause articular manifestations, currently studies show only 

hypotheses regarding the role of gut microbiota in immune-mediated arthritis. 

However, a study conducted on mice having ankylosing spondylitis (AS) and 

positive antigen HLA-B27 and which were maintained in germ-free conditions 

highlighted that they didn't developed articular inflammation (Jacques and 

Elewaut, 2008). 

 Recent studies argue that, intestinal dysbiosis in patients with SA 

correlates with the presence of the antigen HLA-B27. To detect bacteria 
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associated to HLA-B27, 16S rRNA sequencing had been used and elevated 

populations of Paraprevotella and Bacteroides vulgatus have been highlighted 

(Lin et al., 2014). Altered intestinal bacterial composition characterized by: 

increasing populations of Lachnospiraceae, Ruminococcaceae, Rikenellaceae, 

Porphyromonadaceae, Bacteroidaceae, alongside the decreasing of 

Veillonellaceae and Prevotellaceae constitutes a risk factor for developing SA 

(Costello et al., 2015). 

 A recently published study supports the important role of intestinal 

dysbiosis (especially Dialister gender) in spondylarthropathies. There have been 

included 27 patients of which 14 showed microscopic intestinal inflammation 

and 13 without gut inflammation. Ileal and colonic biopsies were performed. 

16SrARN sequences were used in order to compare the intestinal microbial 

composition. The results showed that the microbiota of patients with 

spondylarthropathies was associated with intestinal inflammation and Dialister 

gender was positively correlated with the ASDAS score (Ankylosing 

Spondylitis Disease Activity Score) (Tito et al., 2016).  

 Other diseases such as rheumatoid arthritis (RA) or systemic lupus 

erythematosus (SLE) may have as pathogenic mechanism intestinal dysbiosis 

which contributes to the development of arthritis through activation of 

autoreactive T cells in the gut (Maeda et al., 2016). Dysbiosis in RA is 

characterized by a depletion of Haemophilus spp. - negatively correlated with the 

level of autoantibodies - and an increasing of Lactobacillus salivarius - especially 

in cases of very high RA activity (Zhang et al., 2015). Regarding SLE patients, 

trials evidenced a significant decrease in Firmicutes and Firmicutes/Bacteroidetes 

ratio and a significant increase in Clostridiaceae and Lachnospiraceae groups that 

correlated with disease progression (Hevia et al., 2014). 

 
4. Microbiota and IBD Associated with Articular Manifestations 

 

Regarding the association between IBD and rheumatic disorders, 

namely AS, it must not forget that these conditions have common genetic 

background and are considered distinct phenotypes of an immune-mediated 

inflammatory disorder. The strongest genetic association is represented by the 

antigen HLA-B27. 

Intestinal epithelial cells produce mucins and antimicrobial peptides 

such as lysozyme, defensins and lectins that have a critical role in intestinal 

homeostasis. Patients with active CD show a marked decrease of DEFA5 and 

DEFA6 α-defensins, leading to an impaired mucosal commensal microbial 

flora. Controversially, the studies showed an increased expression of α-defensins 

in patients with SA having also subclinical ileal inflammation (Wehkamp et 

al., 2005). 

Regarding IL-17 / IL-22 cytokines relevant to IBD and 

spondylarthropathies, clear evidences indicate that the interaction between gut 
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microbiota and host causes the activation of immune cells with subsequent 

production of these types of proinflammatory cytokines (Shaw et al., 2012). 

 

5. Mathematical Model 

 

Inflammation results from the accumulation of multiple alterations in a 

single transformed tissue. Even if the probability of transformation is extremely 

low for a single tissue, inflammation could arise by chance within a lifetime if 

many tissue layers are at risk (see the above-mentioned risk factors). Many 

common inflammations exhibit an increase in incidence with age, which can be 

described by a simple equation: 

                                                     
kp bt  

 

Parameters are p (probability of inflammation), b (a constant), t (age of 

individual), and k (the number of rate-limiting stages of inflammation). In a 

particular case, when the inflammation can be associated to cancer, the equation 

fits the epidemiology of colorectal cancer when k is 5 or 6.  

This equation does not include many biological parameters, which are 

presumably incorporated into its constant b. Intuitively, inflammation incidence 

should increase with greater numbers of cells at risk, with greater numbers of 

cell divisions, and with higher mutation rates.  

In this paper we present a simple algebraic equation that relates small 

biological features (adult stem cells and their niches, tissue size, numbers of 

rate-limiting driver mutations, and mutation rates) with the epidemiology of 

inflammatory diseases. 

The probability of inflammation is 10
-36 

when the mutation rate (u) is 

10
-6 

mutations per gene per division and k is six. It is highly improbable that 

inflammation will arise in a single cell after a single division. A more useful 

calculation is the probability of inflammation after the many divisions that 

occur during a human lifetime, and in just one of the many tissues at risk in the 

body. The approach is based on the trick that the probability of “something” 

plus the probability of “not something” equals one. The probability of not 

accumulating a critical mutation (1-u) in one cell lineage after a certain number 

of divisions (d) is: 

(1 )dp u   

 

With more divisions, the probability of no mutation decreases. It 

follows that the probability of mutation after d divisions is: 
 

1 (1 )dp u    

 

For multiple (k) genes: 
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[1 (1 ) ]d kp u    
 

The above equation calculates the probability of a single cell 

accumulating all k driver mutations after d divisions. We must note that this 

model was developed in the case of isotropic inflammation. 

In vivo, biological structures display, by their own nature, an anisotropic 

behavior. In this context, the following problem arises: can the above results be 

generalized to the anisotropic case? 

In order to solve this problem, let us first make the following 

substitutions, in accordance with the one-dimensional model we developed: 
 

2

[1 (1 ) ]

[1 (1 ) ]

d k

k

p u

p x

u d y

  



  

 

 

It results that the inflammation probability law takes the form: 
 

2y x      (1) 
 

The plane geometry associated to Eq. (1) can be founded on a parametric 

group which must make the form from relation (1) invariant. This group can be 

best revealed if the homogenous coordinates  ,y x are used in the form: 

31 2

1
 

xx x

x y
           (2)   

where 

2

[1 (1 ) ]

[1 (1 ) ]

d k

k

x u

y u d

  
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             (3) 

 

case in which Eq. (1) becomes: 
2

2 1 3 0 x x x          (4) 

 

In this situation, the conic from relation (4) accepts the canonic 

parameterization: 

31 2

2 1
 

xx x

t t
              (5) 

 

where t  is a real parameter, and its invariance group is the three-parameters 

group generated by the homographic transformation of the t  parameter. If this 

transformation is written under a more convenient form, 
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1
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which highlights the unit transformation for 
1 2 3 0      , then using Eq. 

(5) the following transformation relations for the parameters 1x , 2x  result 
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                (7) 

 

from which a continuous two variables with three parameters group can be 

observed. The Lie algebra (Duistermaat and Kolk, 2000) is given by the 

operators: 
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   (8) 

with the commutation relations: 

1 2 1

2 3 3

3 1 2

,

,

, 2

L L L

L L L

L L L





 

     (9) 

 

where inhomogeneous coordinates were taken into account in order to simplify 

the writing. 

As it should be, the conics in relation (4) appear in this situation as the 

Eq. (8) group’s invariant varieties with two parameters, and this is why they are 

invariant only with regard to the first two operators from relation (8). The issue 

at hand is not to find the two-parameters invariant varieties families, but to find 

the three-axial that holds three parameters: the main inflammations, i.e. the 

eigenvalues of the inflammations tensor. Now the inflammations evolution 

group remains to be solved, which must be isomorphic to the group from Eq. 

(8). In order to highlight it we must note that the main inflammations are the 

solution to the secular equation of the respective matrix, which can be written as: 
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3 2

1 2 33 3 0y a y a y a           (10)  

 

where 
1 2 33 ,3 ,a a a  are the orthogonal invariants of the inflammations matrix. If 

the inflammation state varies from  1 2 3, ,y y y  to 
' ' '

1 2 3, ,y y y  then an algebra 

theorem (Burnside, 1960) shows that between the secular equations, which have 

the respective values as roots, a linear relation takes place, generated by the 

homographic transformation 

'
ay b

y
cy d





        (11) 

 

which gives a three-parameters group but in three variables. By writing the 

roots of the curve from relation (10) in the Barbilian form (Barbilian, 1967; 

Kelly, 1954),  

'
1

i

i

h hk
y

k









          (12) 

 

where 
3 1,  , i h h  are quantities conjugated one to the other, and k  is a one-

module complex factor, the transformation from Eq. (11) induces upon the 

quantities , ,h h k  the real transformations 
 

'

'

'
















ah b
h

ch d

ah b
h

ch d

ch d
k k

ch d

      (13) 

 

which form a three variables with three parameters group (Burnside, 1960), i.e. 

the Barbilian group. 

This group is simple transitive, with the infinitesimal generators given 

by the operators: 

 

1

2

2 2

3

 
 
 

 
 

 

  
   

  

A
h h

A h h
h h

A h h h h k
h h k

   (14) 
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which reveals for the associated Lie algebra a structure that is identical with the 

one from Eq. (9). Therefore, the two groups are isomorphic, the operators (8) 

and (14) being generated by the one and the same algebra (4). Moreover, the 

group (14), being simple transitive, is definitely measurable, its elementary 

measure being given by the differential three-form: 
 

 
2

 



dh dh dk

h h k
     (15) 

 

As such, in the field variables space  , ,h h k  a probabilities theory can 

be apriori constructed using the elementary probability 
 

 
2

dh dh dk
dP

h h k

 



      

 

As usual, the quadratic root of this function is defined up to an arbitrary 

unimodular factor, and it can be assimilated to the wave function analogue. 

Then, it will satisfy a Schrödinger type equation, equation which defines 

geodesics in a fractal space-time. 

 The issue now at hand is to find the invariant varieties families of the 

group (8) with three parameters, having group (14) associated as a parameters 

group. In our opinion these functions can provide for an answer to the problem 

of the correlation between the one-dimensional and three-dimensional behaviors 

of the inflammation.  

These varieties families will be solutions of the Stoka (Stoka, 1968) 

equations: 
 

   2 2 2

2 0

2 0

2 2 0

   
   

   
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   

   

    
      

    

f f f f
y

x y h h

f f f f
x y h h

x y h h

f f f f f
xy y x h h h h k

x y h h k

    (16) 

 

This system admits solutions of the form: 

 

 2

0, const. f k      (17) 

where:   
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 
 

2

2
2 2

0 2

2

2


 


  

 


 

x y h h

x h h y hh

x yh h
k k

x yh h

    (18) 

 

It can be observed that the last of these integrals is a one-module 

complex one. In principle, f can be any function which is continuous and 

derivable in its variables. It is not yet known what kind of interpretation can a 

general solution such as Eq. (17) have, but some specific integrals values from 

relation (18) can still be interpreted. Thus, if the one-dimensional inflammation 

is monotonous, then Eq. (18) must fulfill the condition 
2 y x , fact which 

leads to the specific value 0x . In this case, the second relation (18) gives:   
 

0






y h
k k

y h
    (19) 

from which we can write y  as: 

0

0






hk hk
y

k k
    (20) 

 

The result we obtained in this case is important mainly because it shows 

that y  can be identified in a specific case with one of the main inflammations. 

Indeed, if 2

0 ( 1, , )    k  then the situation from Eq. (12) is again reached. 

Therefore, we can state that in both these specific cases the inflammation in the 

one-dimensional case can be considered as one of the internal inflammations 

eigenvalues. However, we can draw more from Eq. (20). If this equation is 

written for 
0 1 k , 

1






h hk
y

k
    (21) 

 

and , ,h h k  are explicitly written with regard to the main inflammation, and 

also the system of Eqs. (12) is solved with regard to , ,h h k , then the following 

relations can be found: 
2

2 3 3 1 1 2

2

1 2 3

2

1 2 3

2

1 2 3

y y y y y y
h

y y y

y y y
k

y y y

 

 

 

 

 
 

 

 


 

   (22) 
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These can be related with the above-mentioned parameters by: 
 

 

3

sin 3 cos3
3

ik e

h i




  

 

  
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where 
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1 2 3
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2 2

2 3
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





 




  

 

    (24) 

 

The quantity from Eq. (24) is the known Lode-Nadai parameter of the 

tensions tensor.  

If we use Eq. (23) in relation (21), we obtain the following: 
 

siny         (25) 

 

relation which, in the case of the absence of anisotropic inflammation, is 

reduced to: 

siny        (26) 
 

From this it results that the one-dimensional inflammation can be 

identified with the quantity   from Eq. (24) only if the inflammations which 

are orthogonal to the direction of disease expansion are very close to each other. 

Indeed, in this case, from relation (24) it results that tan  , and, thus, 

sin 1  .  

 

6. Conclusions 

 

The main conclusions of the present paper are presented in the following: 

i) The gut microbiota plays an important role in the development of 

immuno-inflammatory diseases, namely in intestinal and articular disorders. 

Nevertheless, the specifically pathogenic mechanism remain a challenge for the 

practitioner physician. The analysis of gut microbiota opens new perspectives in 

research and for understanding of these systemic diseases. 

ii) Starting from an isotropic model, an anisotropic theoretical model is 

developed for inflammatory disease evolution. 
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We note that the same model can also be applied, because of its 

theoretical implications, in engineering and materials science, in various 

domains, such as the ones described in (Agape et al., 2016; Agape et al., 2017; 

Gaiginschi et al., 2011; Gaiginschi et al., 2014a; Gaiginschi et al., 2014b; 

Gaiginschi et al., 2017; Vornicu et al., 2017). 
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ANIZOTROPIA ÎN BOLILE 

 INFLAMATORII SISTEMICE – UN MODEL TEORETIC 

 

(Rezumat)  

 
Microbiota este considerată un organ cu funcții specifice, ce poate modula 

expresia genelor implicate în protejarea barierei mucoase, angiogeneză sau maturarea 

intestinală postnatală. Modificări ale compoziției microbiotei intestinale, numite într-un 

cuvând disbioză, pot fi asociate cu infecțiile nosocomiale, boala intestinală inflamatorie, 

obezitate, alergii etc. Disbioza mărește permeabilitatea instestinală și crește rata de 

mișcare microbiană la nivelul mucoasei, având ca rezultat endotoxemie inflamatorie și 

metabolică. Toate aceste cauze pot genera boli imuno-inflamatorii sistemice. Plecând de 

la aceste premise, în prezenta lucrare se construiește un model matematic bazat pe 

invarianță grupală, care permite extensia de la multiplicarea omogenă și izotropă la cea 

neomogenă și anizotropă, în cazul evoluției bolilor inflamatorii, cum de regulă se 

întâmplă în structurile biologice.   
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Abstract. Thymol blue (TB) is an important acid basic color indicator used 

in various applications. Its parameters in the ground state are very important for 

applications, so a comparative study of physical parameters of TB was realized 

by three methods from Spartan 14, in order to establish the more convenient 

method to be used in our spectral applications.  

After the geometrical optimization, the TB main parameters like length of 

the chemical bonds, charges near the component atoms, the dihedral angles, 

dipole moments, polarizability of this molecule were computed.  
 

Keywords: thymol blue; atomic charges; dipole moment; polarizability. 

 

 
1. Introduction 

 

The molecule of 4-[3-(4-hydroxy-2-methyl-5-propan-2-ylphenyl)-1,1-

dioxobenzo[c]oxathiol-3-yl]-5-methyl-2-propan-2-ylphenol also named thymol 

blue (TB) (Balderas-Hernandez, 2007) is formed by three benzene rings bonded 

to a central carbon, with a sulphonic group attached to one of the rings and keto-

enol groups bonded to other rings (see the structural formula displayed in Fig. 1). 

                                                 
Corresponding author; e-mail: dimitriu@uaic.ro 
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The chemical formula of TB is C27H30O5S, its molar mass is 466.592 g/mol, its 

melting point is 221-224°C and its flash point is 36°C. TB is a brownish-green 

or reddish-brown crystalline powder, insoluble in water but soluble in alcohol 

and dilute alkali solutions. 
 

 
 

Fig. 1 – Structural formula of TB. 

 
TB is an acid-base indicator from the family of sulphonephtalein, which 

has two color transition intervals, passing from red to yellow at pH 1.2 – 2.8 and 

from yellow to blue at pH 8.0 – 9.6 (Pub. Chem. Database https: pubchem 

ncbi.nlm.nih.gov, access 2018). 

The purpose of this paper is to carry out a quantum-chemical study of 

the TB molecule to establish its molecular parameters. 
 

 
 

Fig. 2 – Skeletal formula with labeled atoms (Hartree-Fock Method). 
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Fig. 2 shows the TB skeletal formula. The atoms are labeled to be able 

to subsequently express the lengths of chemical bonds between the atoms of the 

molecule as well as the dihedral angles.  

 

2. Simulation Details 

 

The Spartan program provides the access to a number of modern 

computational methods (molecular mechanics, semi-empirical and Hartree-Fock 

molecular orbital models) and correlated models including density functional 

models and Møller-Plesset models. Spartan program offers the access to several 

spectral quantities, such as infrared spectra, Raman spectra, NMR spectra and 

UV/visible spectra. Experimental spectra from public online databases may be 

accessed and overlay onto calculated spectra  

Spartan provides graphical tools to improve the interpretation of the 

results of calculations. Molecular orbitals, electron and spin densities, local 

ionization potentials and electrostatic potentials can be displayed as surfaces, 

slices and property maps. Spartan can display some important graphical 

quantities resulting from quantum chemical calculations: the electron density 

(shows how much space a molecule occupies), the bond density (reveals 

chemical bonds) and key molecular orbitals (that provide information about 

chemical reactivity) (Young, 2001). 

The molecular mechanics module calculates the energy, equilibrium 

geometry and vibrational frequencies. The semi-empirical module calculates the 

heat of formation, wavefunction, equilibrium and transition-state geometries and 

vibrational frequencies. The Hartree-Fock module calculates the energy and wave 

function, equilibrium and transition-state geometries and vibrational frequencies. 

The density functional module calculates the energy and wave function, 

equilibrium and transition-state geometries and vibrational frequencies. 

Semi-empirical models are the simplest methods based on quantum 

mechanics. They are applicable to molecules containing 100 - 200 atoms and 

provide geometries in good accord with experimental structures. Semi-empirical 

models are suitable for evaluation of properties that depend solely on geometry 

(such as polar surface area). Semi-empirical models are available for the 

calculation of IR spectra but do not provide a very good account. They are not 

available for the calculation of Raman, NMR or UV/visible spectra. 

Hartree-Fock models follow from the Schrödinger equation by requiring 

that the electrons be independent particles (the Hartree-Fock approximation). 

The motions of electrons in molecules (molecular orbitals) are approximated by 

a sum of the motions of electrons in atoms (atomic orbitals). Hartree-Fock 

models are available for the calculation of IR, Raman, NMR and UV/visible 

spectra. IR (Raman) frequencies are typically overestimated by 10-15% and 

NMR chemical shifts show large variations from experimental values. Density 

functional models are to be preferred (Spartan'14 for Windows, 2014). 
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3. Computational Results 

 

Fig. 3 illustrates the chemical structure of the thymol blue molecule, 

optimized by Spartan’14 program, using Hartree-Fock method. The arrow 

indicates the orientation of the dipole moment, a vectorial physical quantity that 

is a measure of the separation of the electrical charges of a molecule.  

 

 
 

Fig. 3 – Chemical structure of thymol blue, optimized by Spartan’14 program  

(C – grey, S – yellow, O – red, H – white), Hartree-Fock Method. 

 
The properties of thymol blue molecule were computed using three 

different methods offered by Spartan program: Hartree-Fock models, semi-

empirical models and molecular mechanics models. The molecular parameters 

obtained in quantum-chemical analysis are listed in Table 1. One can see that 

the three methods give appropriate values for some information such as weight, 

number of tautomers, area, volume, polar surface area, ovality, log P, 

polarizability, hydrogen bond donor count and hydrogen bond acceptor count. 

The values obtained for energy, energy (aq.), solvation energy, EHOMO, ELUMO, 

dipole moment and conformers are different.  

The charge distribution in a molecule can provide critical insight into its 

physical and chemical properties. Chemical reactions are also associated with 

charged sites, and the most highly-charged molecule, or the most highly-

charged site in a molecule, is often the most reactive. The sign of the charge is 

also important. Positively-charged sites in a molecule invite attack by bases and 

nucleophiles, while negatively-charged sites are usually targeted by acids and 

electrophiles (http://www.quimica.urv.es/~bo/). 

http://www.quimica.urv.es/~bo/MOLMOD/Mike_Colvin/qc/cao.html
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One way to describe a molecule’s charge distribution is to give a 

numerical atomic charge for each atom. A particularly simple and familiar 

recipe yields so-called formal charges directly from Lewis structures.  

 
Table 1  

Molecular Properties of Thymol Blue Molecule, Computed with Spartan’14 Program 

Method of 

Spartan’14 

Hartree-Fock 

Models 

Semi-Empirical PM3 

Models 

Molecular 

Mechanics Models 

Molecule Properties 

Formula C27H30O5S C27H30O5S C27H30O5S 

Weight 466.598 amu 466.598 amu 466.598 amu 

Energy -1801.97521 au -589.36 kJ/mol 201.78 kJ/mol 

Energy (aq) -1802.00114 au -660.64 kJ/mol 110.14 kJ/mol 

Solvation E -68.08 kJ/mol -71.28 kJ/mol -91.64 kJ/mol 

E HOMO -8.11 eV -9.06 eV - 

E LUMO 1.35 eV -1.08 eV - 

Dipole Moment 7.88 debye 5.31 debye 6.27 debye 

Tautomers 5 5 5 

Conformers 384 768 768 

Quantitative Structure-Activity Relationship (QSAR) 

Area 476.90 Å
2
 484.73 Å

2
 489.68 Å

2
 

Volume 472.19 Å
3
 475.34 Å

3
 478.23 Å

3
 

PSA 83.390 Å
2
 88.354 Å

2
 86.359 Å

2
 

Ovality 1.63 1.65 1.66 

Log P 2.54 2.54 2.54 

Polarizability 77.45 Å
3
 78.05 Å

3
 - 

HBD Count 1 1 1 

HBA Count 2 2 2 

Temperature 298.15 K 298.15 K 298.15 K 

 
Unfortunately, formal charges are arbitrary. In fact, all methods for 

assigning charge are arbitrary and necessarily bias the calculated charges in one 

way or another. This includes methods based on quantum mechanics. Mulliken 

Charge, Electrostatic Charge and Natural Charge for thymol blue molecule, 

computed using Hartree-Fock and Semi- Empirical PM3 methods of Spartan 

program, are displayed in Figs. 4-9. The most used charge partitioning scheme 

are Mulliken Populations which assign charge to an atomic center on the basis 

of the total electron density in basis functions located on that center. Natural 

Population Analysis (NPA) is an algorithm that involves partitioning the charge 

into atomic orbitals on each center, constructed by dividing the electron density 

matrix into sub-blocks with the appropriate symmetry. NPA is much less basis 

set dependent than Mulliken Populations (Leach, 2001; Manz and Gabaldon-

Limas, 2016; Reed et al., 1985). 
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Fig. 4 ‒ Mulliken Charge of molecule, using Hartree-Fock Method of Spartan. 

 

 
 

Fig. 5 ‒ Electrostatic Charge of molecule, using Hartree-Fock Method of Spartan. 
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Fig. 6 ‒ Natural Charge of molecule, using Hartree-Fock 

 Method of Spartan. 

 

 
 

Fig. 7 ‒ Mulliken Charge of thymol blue molecule, using 

Semi-Empirical PM3 Method of Spartan. 
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Fig. 8 ‒ Electrostatic Charge of of thymol blue molecule molecule, 

using Semi-Empirical PM3 Method of Spartan. 
 

 
 

Fig. 9 ‒ Natural Charge of of thymol blue molecule molecule, 

using Semi-Empirical PM3 Method of Spartan. 

 

The Spartan program can be used to calculate the lengths of chemical 

bonds between the atoms of the molecule, the angles between these bonds and 

dihedral angles. The lengths of chemical bonds are listed in Table 2. As can it 

be seen, the longest chemical bonds are C5-S1 (1.777 Å), S1-O3 (1.616 Å), 

C25-C26 (1.534 Å), C15-C16, C15-C17, C25-C27 (1.532 Å), while the shortest 

chemical bonds are O4-H18 (0.971 Å), O3-H5 (0.981 Å), C23-H20 (1.083 Å), 

C20-H19 (1.084 Å), C10-H6, C13-H7 (1.087 Å),  C1-H1, C3-H2, C6-H4 (1.088 

Å), C4-H3 (1.089 Å).  
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Table 2 

Lengths of Chemical Bonds of Thymol Blue Molecule, Computed 

 by Hartree-Fock Method of Spartan Program 

 

The measure of some dihedral angles is listed in Table 3.  
 

Table 3 

The Measure of Some Dihedral Angles for Thymol Blue Molecule, 

 Computed by Hartree-Fock Method of Spartan Program 

Dihedral angle Measure Dihedral angle Measure 

(C5,C2,C6,C7) 178.77° (C5,S1,O1,O2) 128.87° 

(C6,C2,C7,C8) 63.77° (C2,C7,C8,C18) 173.63° 

(C2,C7,C8,C13) 68.11° (C2,C7,C18,C22) 169.19° 

(C18,C7,C8,C12) 26.60° (C2,C7, C18,C23) 11.35° 

(C7,C8,C12,C10) 178.98° (C23,C18,C22,C20) 20.39° 

(C12,C10,C11,O4) 179.89° C18,C23,C19,C21) 2.66° 

(C13,C9,C11,O4) 0.92° (C19,C21,C20,C22) 14.53° 

(C9,C11,C10,O4) 179.99° (C18,C22,C20,C24) 173.35° 

(C13,C9,C15,C16) 60.77° (C19,C21,C20,O5) 1.71° 

(C9,C15,C16,C17) 124.68° (C23,C19,C21,C25) 179.06° 

(C2,C5,C4,S1) 0.22° (C23,C19,C25,C26) 9.13° 

(C6,C2,C5,S1) 0.33° (C25,C19,C21,O5) 171.13° 

(C5,S1,O1,O3) 111.71° (C19,C25,C26,C27) 127.23° 

(C5,S1,O2,O3) 112.23° (C21,C19,C25,C27) 78.55° 

Chemical 

bond 

Bond 

length 

(Å) 

Chemical 

bond 

Bond 

Length 

(Å) 

Chemical 

bond 

Bond 

Length 

(Å) 

Chemical 

bond 

Bond 

Length 

(Å) 

C1=C4 1.393 C7-C8 1.503 C15-H11 1.096 C23-H20 1.083 

C4-C5 1.406 C8-C13 1.407 C15-C16 1.532 C22-C24 1.506 

C5=C2 1.409 C13=C9 1.407 C16-H12 1.096 C24-H21 1.095 

C2-C6 1.408 C9-C11 1.396 C16-H13 1.096 C24-H22 1.092 

C6=C3 1.397 C11=C10 1.396 C16-H14 1.095 C24-H23 1.097 

C3-C1 1.391 C10-C12 1.406 C15-C17 1.532 C20-H19 1.084 

C1-H1 1.088 C12=C8 1.413 C17-H15 1.096 C21=O5 1.226 

C3-H2 1.088 C13-H7 1.087 C17-H16 1.095 C19-C25 1.519 

C6-H4 1.088 C10-H6 1.087 C17-H17 1.096 C25-H24 1.098 

C4-H3 1.089 C11-O4 1.367 C7=C18 1.372 C25-C26 1.534 

C5-S1 1.777 O4-H18 0.971 C18-C22 1.485 C26-H25 1.096 

S1-O3 1.616 C12-C14 1.506 C22=C20 1.345 C26-H26 1.096 

S1-O2 1.445 C14-H8 1.096 C20-C21 1.478 C26-H27 1.096 

O3-H5 0.981 C14-H9 1.094 C21-C19 1.494 C25-C27 1.532 

S1=O1 1.445 C14-H10 1.093 C19=C23 1.346 C27-H28 1.096 

`C2-C7 1.503 C9-C15 1.521 C23-C18 1.478 C27-H29 1.095 

      C27-H30 1.095 



78                                                    Ana-Cezarina Moroșanu et al. 
 

 

HOMO (highest occupied molecular orbital) and LUMO (lowest 

unoccupied molecular orbital) frontier orbitals (Miller, 2004) for thymol blue 

molecule are displayed in Fig. 10 (a, b) and Fig. 11 (a, b), using Hartree-Fock 

method of Spartan and Semi-Empirical PM3 method of Spartan, respectively. 

The energy difference between the HOMO and LUMO is generally the lowest 

energy electronic excitation that is possible in a molecule. The energy of the 

HOMO-LUMO gap offers information about what wavelengths are absorbed by 

the compounds (Holtjie et al., 2003). 
 

  
 

Fig. 10 – HOMO (a) and LUMO (b) surfaces for thymol blue molecule,  

obtained with Hartree-Fock method. 

 

  
 

Fig. 11 – HOMO (a) and LUMO (b) surfaces for thymol blue molecule,  

obtained with Semi-Empirical PM3 method. 

 

The electron density surface depict overall molecular size and shape of 

the molecule. Electrostatic potential maps illustrate the space distribution of the 

electrical charge of a molecule (Shusterman and Shusterman, 1997). 

Knowing the distribution of the electrical charge of a molecule, one can 

determine how the molecule interacts with other molecules (Hehre et al., 1998; 

a) b) 

a) b) 
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Hehre, 2003). The local ionization potential provides a measure of the relative 

ease of electron removal (“ionization”) at any location around a molecule. In 

|LUMO| map, the absolute value of the lowest-unoccupied molecular orbital is 

mapped onto an electron density surface. This offers information about where 

an electron pair (a nucleophile) might attack. The LUMO map show the regions 

of a molecule that are are most electron deficient, and therefore, the regions that 

may be subject to nucleophilic attack (Schlick, 2002).  

Density surface, electrostatic potential map, local ionization potential 

map and |LUMO| map, obtained using the two different methods of Spartan, are 

displayed in Fig. 12 (a-d) and Fig. 13 (a-d), respectively.  

 

    
a)                           b)                          c)                               d)     

 

Fig. 12 – Density surface (a), electrostatic potential map (b), local ionization potential 

map (c) and |LUMO| map (d) with Hartree-Fock method. 

 

    
a)                           b)                          c)                               d) 

 

Fig. 13 – Density surface (a), electrostatic potential map (b), local ionization potential 

map (c) and |LUMO| map (d) with Semi-Empirical PM3 method. 

 
4. Conclusions 

 

Some differences between the computed molecular parameters using 

three methods from Spartan 14 are observable, but the order of magnitude and 

sign of the charges values, of the electron density, electron gap and of the other 

molecular characteristics is kept in the computational results. The three methods 

of Spartan show similar more reactive zones of TB molecule both for 

nucleophilic or electrophylic attack. The sign obtained for logP is the same in 

all three methods, emphasizing the hydrophilicity of TB. 
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CARACTERIZAREA CUANTO-MECANICĂ A TIMOLULUI BLUE 

 

(Rezumat)  

 

Timol blue (TB) este un important indicator acido-bazic de culoare utilizat în 

diverse aplicații. Parametrii acestuia în starea fundamentală sunt foarte importanți, așa 

încât am realizat un studiu comparativ al parametrilor fizici ai TB cu trei metode diferite 

din programele Spartan 14, în vederea stabilirii celei mai bune metode pentru a fi 

utilizată în viitoarele noastre aplicații  spectrale.  

După optimizarea geometrică, principalii parametri ai TB, cum sunt lungimea 

legăturilor chimice, sarcinile electrice din vecinătatea atomilor componenți, unghiurile 

diedre, momentul de dipol și polarizabilitatea moleculară, au fost calculați. 

http://www.quimica.urv.es/~bo/MOLMOD/Mike_Colvin/qc/cao.html
https://pubchem.ncbi.nlm.nih.gov/
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